Citation: | Pedro Xavier Ramos, Laurent Schindfessel, João Pedro Pêgo, Tom De Mulder. 2019: Influence of bed elevation discordance on flow patterns and head losses in an open-channel confluence. Water Science and Engineering, 12(3): 235-243. doi: 10.1016/j.wse.2019.09.005 |
Best, J.L., 1987. Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology. In: Ethridge, F.G., Flores, R.M., Harvey, M.D., eds., Recent Developments in Fluvial Sedimentology. Society for Sedimentary Geology, Tulsa, pp. 27–35. https://doi.org/10.2110/pec.87.39.0027.
|
Biron, P., Roy, A.G., Best, J.L., 1996a. Turbulent flow structure at a concordant and discordant open channel confluences. Exp. Fluids 21, 437–446. https://doi.org/10.1007/BF00189046.
|
Biron, P., Best, J.L., Roy, A.G., 1996b. Effects of bed discordance on flow dynamics at open channel confluences. Journal of Hydraulic Engineering 122(12), 676–682. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:12(676).
|
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environmental Modelling & Software 33(7), 1−22. https:// doi.org/10.1016/j.envsoft.2012.02.001.
|
Boyer, C., Roy, A.G., Best, J.L., 2006. Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport and bed morphology. Journal of Geophysical Research: Earth Surface 111(F4). https://doi.org/10.1029/2005JF000458.
|
Bradbrook, K.F., Lane, S.N., Richards, K.S., Biron, P.M., Roy, A.G., 2001. Role of bed discordance at asymmetrical river confluences. Journal of Hydraulic Engineering 127(5), 351–368. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(351).
|
Bradbrook, K.F., Lane, S.N., Richards, K.S., Biron, P.M., Roy, A.G., 2010. Large eddy simulation of periodic flow characteristics at river channel confluences. Journal of Hydraulic Research 38(3), 207–215. https://doi.org/10.1080/00221680009498338.
|
Constantinescu, G., Miyawaki, S., Rhoads, B., Sukhodolov, A., 2012. Numerical analysis of the effect of momentum ratio on the dynamics and sediment‐entrainment capacity of coherent flow structures at a stream confluence. Journal of Geophysical Research: Earth Surface 117(F4). https://doi.org/10.1029/2012JF002452.
|
Constantinescu, G., Miyawaki, S., Rhoads, B., Sukhodolov, A., 2014. Numerical evaluation of the effects of planform geometry and inflow conditions on flow, turbulence structure, and bed shear velocity at a stream confluence with a concordant bed. Journal of Geophysical Research: Earth Surface 119(10), 2079–2097. https://doi.org/10.1002/2014JF003244.
|
Creëlle, S., Schindfessel, L., De Mulder, T., 2017. Modelling of the tributary momentum contribution to predict confluence head losses. Journal of Hydraulic Research 55(2), 175–189. https://doi.org/10.1080/00221686.2016.1212941.
|
De Serres, B., Roy, A.G., Biron, P.M., Best, J.L., 1999. Three-dimensional structure of flow at a confluence of river channels with discordant beds. Geomorphology, 26(4), 313–335. https://doi.org/10.1016/S0169-555X(98)00064-6.
|
?or?evi?, D., 2013. Numerical study of 3D flow at right-angled confluences with and without upstream planform curvature. Journal of Hydroinformatics 15(4), 1073-1088. https://doi.org/10.2166/hydro.2012.150.
|
Dubief, Y., Delcayre, F., 2000. On coherent-vortex identification in turbulence. Journal of Turbulence 1. https://doi.org/10.1088/1468-5248/1/1/011.
|
Gualtieri, C., Filizola, N., Oliveira, M., Santos, A.M., Ianniruberto, M., 2018. A field study of the confluence between Negro and Solimões rivers, Part 1: Hydrodynamics and sediment transport. Comptes Rendus Geoscience 350(1-2), 31–42. https://doi.org/10.1016/j.crte.2017.09.015.
|
Hager, W.H., 1987. Discussion of “Separation zone at open-channel junctions” by James L. Best and Ian Reid (November, 1984). Journal of Hydraulic Engineering 113(4), 539–543. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:4(539).
|
Huang, J., Weber, L.J., Lai, Y.G., 2002.Three-dimensional numerical study of flows in open-channel junctions. Journal of Hydraulic Engineering 128(3), 268–280. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(268).
|
Hunt, J.C.R., Wray, A., Moin, P., 1988. Eddies, stream, and convergence zones in turbulent flows. In: Proceedings of the Summer Program. Center for Turbulence Research, Stanford University, Stanford.
|
Kara, S., Kara, M.C., Stoesser, T., Sturm, T.W., 2015. Free-surface versus rigid-lid LES computations for bridge-abutment flow. Journal of Hydraulic Engineering 141(9), 04015019. https://doi.org/ 10.1061/(ASCE)HY.1943-7900.0001028.
|
Karami, H., Farzin, S., Sadrabadi, M.T., Moazeni, H., 2017. Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios. Water Science and Engineering 10(3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.
|
Kennedy, B.A., 1984. On Playfair's law of accordant junctions. Earth Surface Processes and Landforms 9(2), 153–173. https://doi.org/10.1002/esp.3290090207.
|
Kennedy, J.F., 1983. Reflections on rivers, research, and Rouse. Journal of Hydraulic Engineering 109(10), 1253–1271. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:10(1253).
|
Keylock, C.J., Constantinescu, G., Hardy, R.J., 2012. The application of computational fluid dynamics to natural river channels: Eddy resolving versus mean flow approaches. Geomorphology 179, 1–20. https://doi.org/10.1016/j.geomorph.2012.09.006.
|
Konsoer, K.M., Rhoads, B.L., 2014. Spatial-temporal structure of mixing interface turbulence at two large river confluences. Environ. Fluid Mech. 14(5), 1043–1070.
|
Lane, S.N., Hardy, R.J., Ferguson, R.I., Parsons, D.R., 2005. A framework for model verification and validation of CFD schemes in natural open channel flows. In: Bates, P.D., Lane, S.N., Ferguson, R.I., eds., Computational Fluid Dynamics: Applications in Environmental Hydraulics. John Wiley & Sons, Chichester.
|
Lewis, Q.W., Rhoads, B.L., 2018. LSPIV measurements of two‐dimensional flow structure in streams using small unmanned aerial systems: 1. Accuracy assessment based on comparison with stationary camera platforms and in‐stream velocity measurements. Water Resources Research 54(10), 7981–7999. https://doi.org/10.1029/2018WR022551.
|
Luo, H., 2017. Numerical Investigations of Flow Behavior and Energy Losses in Open Channel Junctions. Ph. D. Dissertation. University of Illinois at Urbana-Champaign, Champaign.
|
McSherry, R.J., Chua, K.V., Stoesser, T., 2017. Large eddy simulation of free-surface flows. Journal of Hydrodynamics 29(1), 1–12. https://doi.org/10.1016/S1001-6058(16)60712-6.
|
Pope, S.B., 2004. Ten questions concerning the large-eddy simulation of turbulent flow. New J. Phys. 6(35). https://doi.org/10.1088/1367-2630/6/1/035.
|
Pouchoulin, S., Ramos, P.X., Mignot, E., Schindfessel, L., De Mulder, T., Riviere, N., 2018. Discussion of “Tang, H., Zhang, H., and Yuan, S. (2018). Hydrodynamics and contaminant transport on a degraded bed at a 90-degree channel confluence. Environmental Fluid Mechanics, 18 (2), 443–463”. Environmental Fluid Mechanics 18(5), 1293–1295. https://doi.org/10.1007/s10652-018-9612-x.
|
Ramos, P.X, Schindfessel, L., Pêgo, J.P., De Mulder, T., 2018. Influence of bed discordance on head losses in an open channel confluence. In: Proceedings of the 5th IAHR Europe Congress New Challenges in Hydraulic Research and Engineering. IAHR, Trento, pp. 107–108. https:// doi.org/10.3850/978-981-11-2731-1_060-cd.
|
Ramos, P.X., Schindfessel, L., Pêgo, J.P., De Mulder, T., 2019. Flat vs. curved rigid-lid LES computations of an open-channel confluence. Journal of Hydroinformatics 21(2), 318–334. https://doi.org/10.2166/hydro.2019.109.
|
Rice, S.P., Roy, A.G., Rhoads, B.L., 2008. River Confluences, Tributaries and the Fluvial Network. John Wiley & Sons, Chichester.
|
Rodi, W., Constantinescu, G., Stoesser, T., 2013. Large-eddy Simulation in Hydraulics. CRC Press, Balkema.
|
Rodi, W., 2017. Turbulence modeling and simulation in hydraulics: A historical review. Journal of Hydraulic Engineering 143(5), 03117001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001288.
|
Schindfessel, L., Creëlle, S., De Mulder, T., 2015. Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water 7(9), 4724–4751. https://doi.org/10.3390/w7094724.
|
Schindfessel, L., 2017. Numerical and Experimental Modeling of the Hydrodynamics of Open Channel Confluences with Dominant Tributary Inflow. Ph. D. Dissertation. Ghent University, Ghent.
|
Umar, M., Rhoads, B.L., Greenberg, J.A., 2018. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. Journal of Hydrology 556, 325–338. https://doi.org/10.1016/j.jhydrol.2017.11.026.
|
Weber, L.J., Schumate, E.D., Mawer, N., 2001. Experiments on flow at a 90° open-channel junction. Journal of Hydraulic Engineering 127(5), 340–350. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(340).
|
Yuan, S.Y., Tang, H.W., Xiao, Y., Qiu, X.H., Xia, Y., 2017. Water flow and sediment transport at open-channel confluences: An experimental study. Journal of Hydraulic Research 1–18. https://doi.org/10.1080/00221686.2017.1354932.
|
Yuan, S.Y., Tang, H.W., Xiao, Y., Chen, X., Xia, Y., Jiang, Z.Y., 2018. Spatial variability of phosphorus adsorption in surface sediment at channel confluences: Field and laboratory experimental evidence. Journal of Hydro-Environment Research 18, 25–36. https://doi.org/10.1016/j.jher.2017.10.001.
|