Volume 12 Issue 4
Dec.  2019
Turn off MathJax
Article Contents
Yun-biao Wu, Lian-qing Xue, Yuan-hong Liu. 2019: Local and regional flood frequency analysis based on hierarchical Bayesian model in Dongting Lake Basin, China. Water Science and Engineering, 12(4): 253-262. doi: 10.1016/j.wse.2019.12.001
Citation: Yun-biao Wu, Lian-qing Xue, Yuan-hong Liu. 2019: Local and regional flood frequency analysis based on hierarchical Bayesian model in Dongting Lake Basin, China. Water Science and Engineering, 12(4): 253-262. doi: 10.1016/j.wse.2019.12.001

Local and regional flood frequency analysis based on hierarchical Bayesian model in Dongting Lake Basin, China

doi: 10.1016/j.wse.2019.12.001
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 51779074 and 41371052), the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China (Grant No. 201501059), the National Key Research and Development Program of China (Grant No. 2017YFC0404304), the Jiangsu Water Conservancy Science and Technology Project (Grant No. 2017027), the Program for Outstanding Young Talents in Colleges and Universities of Anhui Province (Grant No. gxyq2018143), and the Natural Science Foundation of Wanjiang University of Technology (Grant No. WG18030).
More Information
  • Corresponding author: Lian-qing Xue
  • Received Date: 2018-12-08
  • Rev Recd Date: 2019-09-16
  • This study developed a hierarchical Bayesian (HB) model for local and regional flood frequency analysis in the Dongting Lake Basin, in China. The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model. The generalized extreme value (GEV) distribution was selected as the extreme flood distribution, and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate. The Markov Chain Monte Carlo (MCMC) method with Gibbs sampling was employed to calculate the posterior distribution in the HB model. The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles, while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles, due to the fact that the lower confidence bounds tended to decrease as the return periods increased. Furthermore, the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method, such as the homogeneity region assumption and the scale invariance assumption. The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site, but the index flood method with L-moments does not demonstrate this uncertainty directly. Therefore, the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme, and of quantifying the associated predictive uncertainty.

     

  • loading
  • Assis, L.C., Calijuri, M.L., Silva, D.D., Rocha, E.O., Fernandes, A.L.T., Silva, F.F., 2017. A model-based site selection approach associated with regional frequency analysis for modeling extreme rainfall depths in Minas Gerais state, Southeast Brazil. Stoch. Environ. Res. Risk Assess. 32(2), 469-484. https://doi.org/10.1007/s00477-017-1481-1.
    Bracken, C., Rajagopalan, B., Cheng, L., Kleiber, W., Gangopadhyay, S., 2016. Spatial Bayesian hierarchical modeling of precipitation extremes over a large domain. Water Resour. Res. 52(8), 6643-6655. https://doi.org/10.1002/2016wr018768.
    Bracken, C., Holman, K.D., Rajagopalan, B., Moradkhani, H., 2018. A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis. Water Resour. Res. 54(1), 243-255. https://doi.org/10.1002/2017wr020403.
    Coles, S., 2001. An Introduction to Statistical Modeling of ExtremeValues. Springer, London.
    Coles, S., Pericchi, L.R., Sisson, S., 2003. A fully probabilistic approach to extreme rainfall modeling. J. Hydrol. 273(1-4), 35-50. https://doi.org/10.1016/S0022-1694(02)00353-0.
    Cooley, D., Nychka, D., Naveau, P., 2007. Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102(479), 824-840. https://doi.org/10.1198/016214506000000780.
    Dalrymple, T., 1960. Flood Frequency Analysis.United States Government Printing Office, Washington, D.C.
    Gaume, E., Gaál, L., Viglione, A., Szolgay, J., Kohnová, S., Blöschl, G., 2010. Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. J. Hydrol. 394(1-2), 101-117. https://doi.org/10.1016/j.jhydrol.2010.01.008.
    Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457-472. https://doi.org/10.1214/ss/1177011136.
    Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., 2014. Bayesian Data Analysis. CRC Press, Boca Raton.
    Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Patten. Anal. Machine Intel. 6(6), 721–741. https://doi.org/10.1080/02664769300000058.
    Gupta, V.K., Dawdy, D.R., 1995. Physical interpretations of regional variations in the scaling exponents of flood quantiles. Hydrol. Processes. 9(3-4), 347-361. https://doi.org/10.1002/hyp.3360090309.
    Halbert, K., Nguyen, C.C., Payrastre, O., Gaume, E., 2016. Reducing uncertainty in flood frequency analyses: A comparison of local and regional approaches involving information on extreme historical floods. J. Hydrol. 541, 90-98. https://doi.org/10.1016/j.jhydrol.2016.01.017.
    Hosking, J.R.M., Wallis, J.R., 1986a. Paleoflood hydrology and flood frequency analysis. Water Resour. Res. 22(4), 543-550. https://doi.org/10.1029/WR022i004p00543.
    Hosking, J.R.M., Wallis, J.R., 1986b. The value of historical data in ?ood frequency analysis. Water Resour. Res. 22(11), 1606-1612. https://doi.org/10.1029/WR022i011p01606.
    Hosking, J.R.M., Wallis, J.R., 1997. Regional Fequency Analysis: An Approach Based on L-Moments. Cambridge Unviersity Press, Cambridge.
    Huo, W.B., Zhu, Y.L., Li, Z.J., Feng, J., Zhou, L., Kong, J., 2018. Comparison of Xin'anjiang model and Support Vector Machine model in the application of real-time flood forecasting. Journal of Hohai University (Natural Sciences), 46(4), 283-289 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2018.04.001.
    Jenkinson, A.F., 1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. Roy. Meteor. Soc. 81(348), 158-171. https://doi.org/10.1002/qj.49708134804.
    Katz, R.W., Parlange, M.B., Naveau, P., 2002. Statistics of extremes in hydrology. Adv. Water Resour. 25(8-12), 1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8.
    Li, Z.J., Liang, S.Q., Huo, W.B., Wen, Y.H., 2019. Study on the flood forecasting in complex basins of upper and middle reaches of Huaihe River. Journal of Hohai University (Natural Sciences), 47(1), 1-6 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2019.01.001.
    Lima, C.H.R., Lall, U., 2010. Spatial scaling in a changing climate: A hierarchical Bayesian model for non-stationary multi-site annual maximum and monthly streamflow. J. Hydrol. 383(3-4), 307-318. https://doi.org/10.1016/j.jhydrol.2009.12.045.
    Lima, C.H.R., Lall, U., Troy, T., Devineni, N., 2016. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates. J. Hydrol. 541, 816-823. https://doi.org/10.1016/j.jhydrol.2016.07.042.
    Lunn, D., Spiegelhalter, D., Thomas, A., Best, N., 2009. The BUGS project: Evolution, critique and future directions. Stat. Med. 28(25), 3049-3067. https://doi.org/10.1002/sim.3680.
    Martins, E.S., Stedinger, J.R., 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 36(3), 737-744. https://doi.org/10.1029/1999wr900330.
    Morrison, J.E., Smith, J.A., 2002. Stochastic modeling of flood peaks using the generalized extreme value distribution. Water Resour. Res. 38(12), 41-1-41-12. https://doi.org/10.1029/2001wr000502.
    Najafi, M.R., Moradkhani, H., 2013. Analysis of runoff extremes using spatial hierarchical Bayesian modeling. Water Resour. Res. 49(10), 6656-6670. https://doi.org/10.1002/wrcr.20381.
    Najafi, M.R., Moradkhani, H., 2014. A hierarchical Bayesian approach for the analysis of climate change impact on runoff extremes. Hydrol. Processes. 28(26), 6292-6308. https://doi.org/10.1002/hyp.10113.
    Nguyen, C.C., Gaume, E., Payrastre, O., 2014. Regional flood frequency analyses involving extraordinary flood events at ungauged sites: Further developments and validations. J. Hydrol. 508, 385-396. https://doi.org/10.1016/j.jhydrol.2013.09.058.
    O'Connell, D.R.H., Ostenaa, D.A., Levish, D.R., Klinger, R.E., 2002. Bayesian flood frequency analysis with paleohydrologic bound data. Water Resour. Res. 38(5), 16-1-16-13. https://doi.org/10.1029/2000wr000028.
    Ouarda, T.B.M.J., El-Adlouni, S., 2011. Bayesian nonstationary frequency analysis of hydrological variables. J. Am. Stat. Assoc. 47(3), 496-505. https://doi.org/10.1111/j.1752-1688.2011.00544.x.
    Reis, D.S., Stedinger, J.R., 2005. Bayesian MCMC flood frequency analysis with historical information. J. Hydrol. 313(1-2), 97-116. https://doi.org/10.1016/j.jhydrol.2005.02.028.
    Renard, B., Garreta, V., Lang, M., 2006. An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation of a regional trend in annual maxima. Water Resour. Res. 42(12), W12422. https://doi.org/10.1029/2005wr004591.
    Renard, B., 2011. A Bayesian hierarchical approach to regional frequency analysis. Water Resour. Res. 47(11), 1-21. https://doi.org/10.1029/2010wr010089.
    Sivapalan, M., 2003. Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Processes 17(15), 3163-3170. https://doi.org/10.1002/hyp.5155.
    Steinschneider, S., Lall, U., 2015. A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports. Water Resour. Res. 51(3), 1472-1492. https://doi.org/10.1002/2014wr016664.
    Villarini, G., Smith, J.A., 2010. Flood peak distributions for the eastern United States. Water Resour. Res. 46(6). https://doi.org/10.1029/2009wr008395.
    Wu, Y., Xue, L., Liu, Y., Ren, L., 2019. Uncertainty assessment of extreme flood estimation in the Dongting Lake basin, China. Hydrol. Res. 50(4), 1162-1176. https://doi.org/10.2166/nh.2019.088.
    Xiong, Y., Wang, K., Liu, C., 2009. Impact of LUCC on ecosystem service value in the up and middle reaches of Dongting Lake Basin, China. Wetland Science 7(4), 327-334.
    Yan, H., Moradkhani, H., 2014. A regional Bayesian hierarchical model for flood frequency analysis. Stoch. Environ. Res. Risk Assess. 29(3), 1019-1036. https://doi.org/10.1007/s00477-014-0975-3.
    Yoon, S., Cho, W., Heo, J.-H., Kim, C.E., 2009. A full Bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution. Stoch. Environ. Res. Risk Assess. 24(5), 761-770. https://doi.org/10.1007/s00477-009-0362-7.
    Yuan, Y., Zhang, C., Zeng, G., Liang, J., Guo, S., Huang, L., Wu, H., Hua, S., 2016. Quantitative assessment of the contribution of climate variability and human activity to streamflow alteration in Dongting Lake, China. Hydrol. Processes. 30(12), 1929-1939. https://doi.org/10.1002/hyp.10768.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (413) PDF downloads(457) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return