Citation: | Yun-biao Wu, Lian-qing Xue, Yuan-hong Liu. 2019: Local and regional flood frequency analysis based on hierarchical Bayesian model in Dongting Lake Basin, China. Water Science and Engineering, 12(4): 253-262. doi: 10.1016/j.wse.2019.12.001 |
Assis, L.C., Calijuri, M.L., Silva, D.D., Rocha, E.O., Fernandes, A.L.T., Silva, F.F., 2017. A model-based site selection approach associated with regional frequency analysis for modeling extreme rainfall depths in Minas Gerais state, Southeast Brazil. Stoch. Environ. Res. Risk Assess. 32(2), 469-484. https://doi.org/10.1007/s00477-017-1481-1.
|
Bracken, C., Rajagopalan, B., Cheng, L., Kleiber, W., Gangopadhyay, S., 2016. Spatial Bayesian hierarchical modeling of precipitation extremes over a large domain. Water Resour. Res. 52(8), 6643-6655. https://doi.org/10.1002/2016wr018768.
|
Bracken, C., Holman, K.D., Rajagopalan, B., Moradkhani, H., 2018. A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis. Water Resour. Res. 54(1), 243-255. https://doi.org/10.1002/2017wr020403.
|
Coles, S., 2001. An Introduction to Statistical Modeling of ExtremeValues. Springer, London.
|
Coles, S., Pericchi, L.R., Sisson, S., 2003. A fully probabilistic approach to extreme rainfall modeling. J. Hydrol. 273(1-4), 35-50. https://doi.org/10.1016/S0022-1694(02)00353-0.
|
Cooley, D., Nychka, D., Naveau, P., 2007. Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102(479), 824-840. https://doi.org/10.1198/016214506000000780.
|
Dalrymple, T., 1960. Flood Frequency Analysis.United States Government Printing Office, Washington, D.C.
|
Gaume, E., Gaál, L., Viglione, A., Szolgay, J., Kohnová, S., Blöschl, G., 2010. Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. J. Hydrol. 394(1-2), 101-117. https://doi.org/10.1016/j.jhydrol.2010.01.008.
|
Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457-472. https://doi.org/10.1214/ss/1177011136.
|
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., 2014. Bayesian Data Analysis. CRC Press, Boca Raton.
|
Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Patten. Anal. Machine Intel. 6(6), 721–741. https://doi.org/10.1080/02664769300000058.
|
Gupta, V.K., Dawdy, D.R., 1995. Physical interpretations of regional variations in the scaling exponents of flood quantiles. Hydrol. Processes. 9(3-4), 347-361. https://doi.org/10.1002/hyp.3360090309.
|
Halbert, K., Nguyen, C.C., Payrastre, O., Gaume, E., 2016. Reducing uncertainty in flood frequency analyses: A comparison of local and regional approaches involving information on extreme historical floods. J. Hydrol. 541, 90-98. https://doi.org/10.1016/j.jhydrol.2016.01.017.
|
Hosking, J.R.M., Wallis, J.R., 1986a. Paleoflood hydrology and flood frequency analysis. Water Resour. Res. 22(4), 543-550. https://doi.org/10.1029/WR022i004p00543.
|
Hosking, J.R.M., Wallis, J.R., 1986b. The value of historical data in ?ood frequency analysis. Water Resour. Res. 22(11), 1606-1612. https://doi.org/10.1029/WR022i011p01606.
|
Hosking, J.R.M., Wallis, J.R., 1997. Regional Fequency Analysis: An Approach Based on L-Moments. Cambridge Unviersity Press, Cambridge.
|
Huo, W.B., Zhu, Y.L., Li, Z.J., Feng, J., Zhou, L., Kong, J., 2018. Comparison of Xin'anjiang model and Support Vector Machine model in the application of real-time flood forecasting. Journal of Hohai University (Natural Sciences), 46(4), 283-289 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2018.04.001.
|
Jenkinson, A.F., 1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. Roy. Meteor. Soc. 81(348), 158-171. https://doi.org/10.1002/qj.49708134804.
|
Katz, R.W., Parlange, M.B., Naveau, P., 2002. Statistics of extremes in hydrology. Adv. Water Resour. 25(8-12), 1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8.
|
Li, Z.J., Liang, S.Q., Huo, W.B., Wen, Y.H., 2019. Study on the flood forecasting in complex basins of upper and middle reaches of Huaihe River. Journal of Hohai University (Natural Sciences), 47(1), 1-6 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2019.01.001.
|
Lima, C.H.R., Lall, U., 2010. Spatial scaling in a changing climate: A hierarchical Bayesian model for non-stationary multi-site annual maximum and monthly streamflow. J. Hydrol. 383(3-4), 307-318. https://doi.org/10.1016/j.jhydrol.2009.12.045.
|
Lima, C.H.R., Lall, U., Troy, T., Devineni, N., 2016. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates. J. Hydrol. 541, 816-823. https://doi.org/10.1016/j.jhydrol.2016.07.042.
|
Lunn, D., Spiegelhalter, D., Thomas, A., Best, N., 2009. The BUGS project: Evolution, critique and future directions. Stat. Med. 28(25), 3049-3067. https://doi.org/10.1002/sim.3680.
|
Martins, E.S., Stedinger, J.R., 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 36(3), 737-744. https://doi.org/10.1029/1999wr900330.
|
Morrison, J.E., Smith, J.A., 2002. Stochastic modeling of flood peaks using the generalized extreme value distribution. Water Resour. Res. 38(12), 41-1-41-12. https://doi.org/10.1029/2001wr000502.
|
Najafi, M.R., Moradkhani, H., 2013. Analysis of runoff extremes using spatial hierarchical Bayesian modeling. Water Resour. Res. 49(10), 6656-6670. https://doi.org/10.1002/wrcr.20381.
|
Najafi, M.R., Moradkhani, H., 2014. A hierarchical Bayesian approach for the analysis of climate change impact on runoff extremes. Hydrol. Processes. 28(26), 6292-6308. https://doi.org/10.1002/hyp.10113.
|
Nguyen, C.C., Gaume, E., Payrastre, O., 2014. Regional flood frequency analyses involving extraordinary flood events at ungauged sites: Further developments and validations. J. Hydrol. 508, 385-396. https://doi.org/10.1016/j.jhydrol.2013.09.058.
|
O'Connell, D.R.H., Ostenaa, D.A., Levish, D.R., Klinger, R.E., 2002. Bayesian flood frequency analysis with paleohydrologic bound data. Water Resour. Res. 38(5), 16-1-16-13. https://doi.org/10.1029/2000wr000028.
|
Ouarda, T.B.M.J., El-Adlouni, S., 2011. Bayesian nonstationary frequency analysis of hydrological variables. J. Am. Stat. Assoc. 47(3), 496-505. https://doi.org/10.1111/j.1752-1688.2011.00544.x.
|
Reis, D.S., Stedinger, J.R., 2005. Bayesian MCMC flood frequency analysis with historical information. J. Hydrol. 313(1-2), 97-116. https://doi.org/10.1016/j.jhydrol.2005.02.028.
|
Renard, B., Garreta, V., Lang, M., 2006. An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation of a regional trend in annual maxima. Water Resour. Res. 42(12), W12422. https://doi.org/10.1029/2005wr004591.
|
Renard, B., 2011. A Bayesian hierarchical approach to regional frequency analysis. Water Resour. Res. 47(11), 1-21. https://doi.org/10.1029/2010wr010089.
|
Sivapalan, M., 2003. Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Processes 17(15), 3163-3170. https://doi.org/10.1002/hyp.5155.
|
Steinschneider, S., Lall, U., 2015. A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports. Water Resour. Res. 51(3), 1472-1492. https://doi.org/10.1002/2014wr016664.
|
Villarini, G., Smith, J.A., 2010. Flood peak distributions for the eastern United States. Water Resour. Res. 46(6). https://doi.org/10.1029/2009wr008395.
|
Wu, Y., Xue, L., Liu, Y., Ren, L., 2019. Uncertainty assessment of extreme flood estimation in the Dongting Lake basin, China. Hydrol. Res. 50(4), 1162-1176. https://doi.org/10.2166/nh.2019.088.
|
Xiong, Y., Wang, K., Liu, C., 2009. Impact of LUCC on ecosystem service value in the up and middle reaches of Dongting Lake Basin, China. Wetland Science 7(4), 327-334.
|
Yan, H., Moradkhani, H., 2014. A regional Bayesian hierarchical model for flood frequency analysis. Stoch. Environ. Res. Risk Assess. 29(3), 1019-1036. https://doi.org/10.1007/s00477-014-0975-3.
|
Yoon, S., Cho, W., Heo, J.-H., Kim, C.E., 2009. A full Bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution. Stoch. Environ. Res. Risk Assess. 24(5), 761-770. https://doi.org/10.1007/s00477-009-0362-7.
|
Yuan, Y., Zhang, C., Zeng, G., Liang, J., Guo, S., Huang, L., Wu, H., Hua, S., 2016. Quantitative assessment of the contribution of climate variability and human activity to streamflow alteration in Dongting Lake, China. Hydrol. Processes. 30(12), 1929-1939. https://doi.org/10.1002/hyp.10768.
|