Volume 12 Issue 4
Dec.  2019
Turn off MathJax
Article Contents
Jing-qiao Mao, Ming-ming Tian, Teng-fei Hu, Kang Ji, Ling-quan Dai, Hui-chao Dai. 2019: Shuffled complex evolution coupled with stochastic ranking for      reservoir scheduling problems. Water Science and Engineering, 12(4): 307-318. doi: 10.1016/j.wse.2019.12.003
Citation: Jing-qiao Mao, Ming-ming Tian, Teng-fei Hu, Kang Ji, Ling-quan Dai, Hui-chao Dai. 2019: Shuffled complex evolution coupled with stochastic ranking for      reservoir scheduling problems. Water Science and Engineering, 12(4): 307-318. doi: 10.1016/j.wse.2019.12.003

Shuffled complex evolution coupled with stochastic ranking for      reservoir scheduling problems

doi: 10.1016/j.wse.2019.12.003
Funds:  This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFC0401702), the Fundamental Research Funds for the Central Universities (Grant No. 2018B11214), and the National Natural Science Foundation of China (Grants No. 51379059 and 51579002).
More Information
  • Corresponding author: Jing-qiao Mao
  • Received Date: 2018-11-25
  • Rev Recd Date: 2019-09-26
  • This paper introduces an optimization method (SCE-SR) that combines shuffled complex evolution (SCE) and stochastic ranking (SR) to solve constrained reservoir scheduling problems, ranking individuals with both objectives and constrains considered. A specialized strategy is used in the evolution process to ensure that the optimal results are feasible individuals. This method is suitable for handling multiple conflicting constraints, and is easy to implement, requiring little parameter tuning. The search properties of the method are ensured through the combination of deterministic and probabilistic approaches. The proposed SCE-SR was tested against hydropower scheduling problems of a single reservoir and a multi-reservoir system, and its performance is compared with that of two classical methods (the dynamic programming and genetic algorithm). The results show that the SCE-SR method is an effective and efficient method for optimizing hydropower generation and locating feasible regions quickly, with sufficient global convergence properties and robustness. The operation schedules obtained satisfy the basic scheduling requirements of reservoirs.

     

  • loading
  • Buras, N., 1966. Dynamic programming in water resources development. Advances in Hydroscience 3, 367-412. https://doi.org/10.1016/B978-0-12-021803-5.50014-1.
    Cai, Z.X., Wang, Y., 2006. A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Transactions on Evolutionary Computation 10(6), 658-675. https://doi.org/10.1109/Tevc.2006.872344.
    Castelletti, A., Pianosi, F., Soncini-Sessa, R., 2008. Water reservoir control under economic, social and environmental constraints. Automatica 44(6), 1595-1607. https://doi.org/10.1016/j.automatica.2008.03.003.
    Chang, L.C., Chang, F.J., 2001. Intelligent control for modelling of real-time reservoir operation. Hydrological Processes 15(9), 1621-1634. https://doi.org/10.1002/hyp.226.
    Coello, C.A.C., Montes, E.M., 2002. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics 16(3), 193-203. https://doi.org/10.1016/S1474-0346(02)00011-3.
    Deb, K., 2000. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8.
    Duan, Q.Y., 1991. A Global Optimization Strategy for Efficient and Effective Calibration of Hydrologic Models. Ph. D. Dissertation. The University of Arizona, Tucson.
    Duan, Q.Y., Sorooshian, S., Gupta, V.K., 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28(4), 1015-1031. https://doi.org/10.1029/91WR02985.
    Duan, Q.Y., Gupta, V.K., Sorooshian, S., 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications 76(3), 501-521. https://doi.org/10.1007/BF00939380.
    Duan, Q.Y., Sorooshian, S., Gupta, V.K., 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology 158(3-4), 265-284. https://doi.org/10.1016/0022-1694(94)90057-4.
    Hu, T.F., Mao, J.Q., Tian, M.M., Dai, H.C., Rong, G.W., 2018. New constraint-handling technique for evolutionary optimization of reservoir operation. Journal of Water Resources Planning and Management 144(3), https://doi.org/10.1061/(ASCE)WR.1943-5452.0000891.
    Khatibi, R.H., 2003. Hydraulic classification of irrigation supply systems. Journal of Hydraulic Research 41(1), 15-26. https://doi.org/10.1080/00221680309499925.
    Labadie, J.W., 2004. Optimal operation of multireservoir systems: State-of-the-art review. Journal of Water Resources Planning and Management 130(2), 93-111. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(93).
    Li, F.F., Wei, J.H., Fu, X.D., Wan, X.Y., 2012. An effective approach to long-term optimal operation of large-scale reservoir systems: Case study of the Three Gorges system. Water Resources Management 26(14), 4073-4090. https://doi.org/10.1007/s11269-012-0131-0.
    Li, M.H., Jing, L., Zhu, Y.J., Gao, X.Y., Wang, Q., Kong, J., 2018. Research on the water source identification based on an improved genetic algorithm. Journal of Hohai University (Natural Sciences) 46(5), 402-407 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2018.05.005.
    Liu, P., Guo, S.L., Xu, X.W., Chen, J.H., 2011. Derivation of aggregation-based joint operating rule curves for cascade hydropower reservoirs. Water Resources Management 25(13), 3177-3200. https://doi.org/10.1007/s11269-011-9851-9.
    Liu, Q., Fang, G.H., Sun, H.B., Wu, X.W., 2017. Joint optimization scheduling for water conservancy projects in complex river networks. Water Science and Egineering 10(1), 43-52. https://doi.org/10.1016/j.wse.2017.03.008.
    Mao, J.Q., Jiang, D.G., Dai, H.C., 2015. Spatial-temporal hydrodynamic and algal bloom modelling analysis of a reservoir tributary embayment. Journal of Hydro-environment Research 9(2), 200-215. http://doi.org/10.1016/j.jher.2014.09.005.
    Mao, J.Q., Zhang, P.P., Dai, L.Q., Dai, H.C., Hu, T.F., 2016. Optimal operation of a multi-reservoir system for environmental water demand of a river-connected lake. Hydrology Research. 47(s1), 206-224. https://doi.org/10.2166/nh.2016.043.
    Mezura-Montes, E., Coello, C.A.C., 2005. A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation 9(1), 1-17. https://doi.org/10.1109/TEVC.2004.836819.
    Runarsson, T.P., Yao, X., 2000. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation 4(3), 284-294. https://doi.org/10.1109/4235.873238.
    Simonovic, S.P., 1992. Reservoir systems analysis: Closing gap between theory and practice. Journal of Water Resources Planning and Management 118(3), 262-280. https://doi.org/10.1061/(ASCE)0733-9496(1992)118:3(262).
    Tang, Y.H., Luan, C.M., 2007. Application of SCE-UA method in calibrating parameters of Xin’anjiang model and TOPMODEL. Journal of China Hydrology 27(6), 33-35 (in Chinese). https://doi.org/10.3969/j.issn.1000-0852.2007.06.008.
    Teegavarapu, R.S., Simonovic, S.P., 2000. Short-term operation model for coupled hydropower reservoirs. Journal of Water Resources Planning and Management 126(2), 98-106. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:2(98).
    Yan, L.Z., Fu, Q.P., Lu, J., Li, R.B., 2018. Influence of key parameters variation on average annual electricity generation of hydropower plants. Yangtze River 49(13), 44-47 (in Chinese). http://doi.org/10.16232/j.cnki.1001-4179.2018.13.008.
    Yeh, W.W.G., 1985. Reservoir management and operations models: A state of the art review. Water Resources Research 21(12), 1797-1818. https://doi.org/10.1029/WR021i012p01797.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (374) PDF downloads(363) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return