Citation: | Xi-Zhi Niu. 2019: Models to predict sunlight-induced photodegradation rates of contaminants in wastewater stabilisation ponds and clarifiers. Water Science and Engineering, 12(4): 293-297. doi: 10.1016/j.wse.2019.12.005 |
Afsharnia, M., Kianmehr, M., Biglari, H., Dargahi, A., Karimi, A., 2018. Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Science and Engineering, 11(3), 214-219. https://doi.org/10.1016/j.wse.2018.10.001.
|
Boreen, A.L., Arnold, W.A., McNeill, K., 2003. Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences, 65(4), 320-341. https://doi.org/10.1007/s00027-003-0672-7.
|
Canonica, S., Meunier, L., von Gunten, U., 2008. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research, 42(1-2), 121-128. https://doi.org/10.1016/j.watres.2007.07.026.
|
Ge, P., Yu, H., Chen, J.W., Qu, J.P., Luo, Y., 2018. Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: A DFT study. Chemosphere, 197, 569-575. https://doi.org/10.1016/j.chemosphere.2018.01.041.
|
Glady-Croue, J., Niu, X.Z., Ramsay, J.P., Watkin, E., Murphy, R.J.T., Croue, J.-P., 2018. Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. Science of The Total Environment, 626, 1005-1011. https://doi.org/10.1016/j.scitotenv.2018.01.101.
|
Gruchlik, Y., Linge, K., Joll, C., 2018. Removal of organic micropollutants in waste stabilisation ponds: A review. Journal of Environmental Management, 206, 202-214. https://doi.org/10.1016/j.jenvman.2017.10.020.
|
Gschwend, P.M., 2016. Environmental Organic Chemistry. John Wiley & Sons.
|
Jacobs, L.E., Fimmen, R.L., Chin, Y.-P., Mash, H.E., Weavers, L.K., 2011. Fulvic acid mediated photolysis of ibuprofen in water. Water Research, 45(15), 4449-4458. https://doi.org/10.1016/j.watres.2011.05.041.
|
Kohn, T., Nelson, K.L., 2007. Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environmental Science & Technology, 41(1), 192-197. https://doi.org/10.1021/es061716i.
|
Latch, D.E., Stender, B.L., Packer, J.L., Arnold, W.A., McNeill, K., 2003. Photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine. Environmental Science & Technology, 37(15), 3342-3350. https://doi.org/10.1021/es0340782.
|
Lee, E., Glover, C.M., Rosario-Ortiz, F.L., 2013. Photochemical formation of hydroxyl radical from effluent organic matter: Role of composition. Environmental Science & Technology, 47(21), 12073-12080. https://doi.org/10.1021/es402491t.
|
Leifer, A., 1988. The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice. American Chemical Society.
|
Liang, C., Zhao, H., Deng, M., Quan, X., Chen, S., Wang, H., 2015. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin. Journal of Environmental Sciences, 27, 115-123. https://doi.org/10.1016/j.jes.2014.08.015.
|
Niu, X.Z., Liu, C., Gutierrez, L., Croué, J.-P., 2014. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter. Water Research, 66, 140-148. https://doi.org/10.1016/j.watres.2014.08.017.
|
Niu, X.Z., Busetti, F., Langsa, M., Croué, J.-P., 2016. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Research, 106, 214-222. https://doi.org/10.1016/j.watres.2016.10.002.
|
Niu, X.Z., Glady-Croue, J., Croue, J.P., 2017. Photodegradation of sulfathiazole under simulated sunlight: Kinetics, photo-induced structural rearrangement, and antimicrobial activities of photoproducts. Water Research, 124, 576-583. https://doi.org/10.1016/j.watres.2017.08.019.
|
Niu, X.Z., Moore, E.G., Croue, J.-P., 2018. Excited triplet state interactions of fluoroquinolone norfloxacin with natural organic matter: A laser spectroscopy study. Environmental Science & Technology, 52(18), 10426-10432. https://doi.org/10.1021/acs.est.8b02835.
|
Niu, X.Z., Croué, J.-P., 2019. Photochemical production of hydroxyl radical from algal organic matter. Water Research, 161, 11-16. https://doi.org/10.1016/j.watres.2019.05.089.
|
Niu, X.Z., Harir, M., Schmitt-Kopplin, P., Croué, J.-P., 2019. Sunlight-induced phototransformation of transphilic and hydrophobic fractions of Suwannee River dissolved organic matter. Science of The Total Environment, 694, 133737. https://doi.org/10.1016/j.scitotenv.2019.133737.
|
Remucal, C.K., McNeill, K., 2011. Photosensitized amino acid degradation in the presence of riboflavin and its derivatives. Environmental Science & Technology, 45(12), 5230-5237. https://doi.org/10.1021/es200411a.
|
Romero-Maraccini, O.C., Sadik, N.J., Rosado-Lausell, S.L., Pugh, C.R., Niu, X.Z., Croue, J.-P., Nguyen, T.H., 2013. Sunlight-induced inactivation of human Wa and porcine OSU rotaviruses in the presence of exogenous photosensitizers. Environmental Science & Technology, 47(19), 11004-11012. https://doi.org/10.1021/es402285u.
|
Sharpless, C.M., Aeschbacher, M., Page, S.E., Wenk, J., Sander, M., McNeill, K., 2014. Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances. Environmental Science & Technology, 48(5), 2688-2696. https://doi.org/10.1021/es403925g.
|
Vaughan, P.P., Blough, N.V., 1998. Photochemical formation of hydroxyl radical by constituents of natural waters. Environmental Science & Technology, 32(19), 2947-2953. https://doi.org/10.1021/es9710417.
|
Wenk, J., Nguyen, M.T., Nelson, K.L., 2019. Natural photosensitizers in constructed unit process wetlands: Photochemical characterization and inactivation of pathogen indicator organisms. Environmental Science & Technology, 53(13), 7724-7735. https://doi.org/10.1021/acs.est.9b01180.
|
Xu, H., Cooper, W. J., Jung, J., Song, W., 2011. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), 632-638. https://doi.org/10.1016/j.watres.2010.08.024.
|