Volume 12 Issue 4
Dec.  2019
Turn off MathJax
Article Contents
Xi-Zhi Niu. 2019: Models to predict sunlight-induced photodegradation rates of contaminants in wastewater stabilisation ponds and clarifiers. Water Science and Engineering, 12(4): 293-297. doi: 10.1016/j.wse.2019.12.005
Citation: Xi-Zhi Niu. 2019: Models to predict sunlight-induced photodegradation rates of contaminants in wastewater stabilisation ponds and clarifiers. Water Science and Engineering, 12(4): 293-297. doi: 10.1016/j.wse.2019.12.005

Models to predict sunlight-induced photodegradation rates of contaminants in wastewater stabilisation ponds and clarifiers

doi: 10.1016/j.wse.2019.12.005
More Information
  • Corresponding author: Xi-Zhi Niu
  • Received Date: 2019-04-01
  • Rev Recd Date: 2019-09-21
  • Two kinetic models were established for conservative estimates of photodegradation rates of contaminants under sunlight irradiation, in particular for wastewater stabilisation ponds and clarifiers in conventional wastewater treatment plants. These two models were designated for (1) contaminants with high photolytic rates or high photolytic quantum yields, whose photodegradation is unlikely to be enhanced by aquatic photosensitisers; and (2) contaminants withstanding direct photolysis in sunlit waters but subjected to indirect photolysis. The effortlessly intelligible prediction procedure involves sampling and analysis of real water samples, simulated solar experiments in the laboratory, and transfer of the laboratory results to realist water treatment using the prediction models. Although similar models have been widely used for laboratory studies, this paper provides a preliminary example of translating laboratory results to the photochemical fate of contaminants in real waters.


  • loading
  • Afsharnia, M., Kianmehr, M., Biglari, H., Dargahi, A., Karimi, A., 2018. Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Science and Engineering, 11(3), 214-219. https://doi.org/10.1016/j.wse.2018.10.001.
    Boreen, A.L., Arnold, W.A., McNeill, K., 2003. Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences, 65(4), 320-341. https://doi.org/10.1007/s00027-003-0672-7.
    Canonica, S., Meunier, L., von Gunten, U., 2008. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research, 42(1-2), 121-128. https://doi.org/10.1016/j.watres.2007.07.026.
    Ge, P., Yu, H., Chen, J.W., Qu, J.P., Luo, Y., 2018. Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: A DFT study. Chemosphere, 197, 569-575. https://doi.org/10.1016/j.chemosphere.2018.01.041.
    Glady-Croue, J., Niu, X.Z., Ramsay, J.P., Watkin, E., Murphy, R.J.T., Croue, J.-P., 2018. Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. Science of The Total Environment, 626, 1005-1011. https://doi.org/10.1016/j.scitotenv.2018.01.101.
    Gruchlik, Y., Linge, K., Joll, C., 2018. Removal of organic micropollutants in waste stabilisation ponds: A review. Journal of Environmental Management, 206, 202-214. https://doi.org/10.1016/j.jenvman.2017.10.020.
    Gschwend, P.M., 2016. Environmental Organic Chemistry. John Wiley & Sons.
    Jacobs, L.E., Fimmen, R.L., Chin, Y.-P., Mash, H.E., Weavers, L.K., 2011. Fulvic acid mediated photolysis of ibuprofen in water. Water Research, 45(15), 4449-4458. https://doi.org/10.1016/j.watres.2011.05.041.
    Kohn, T., Nelson, K.L., 2007. Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environmental Science & Technology, 41(1), 192-197. https://doi.org/10.1021/es061716i.
    Latch, D.E., Stender, B.L., Packer, J.L., Arnold, W.A., McNeill, K., 2003. Photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine. Environmental Science & Technology, 37(15), 3342-3350. https://doi.org/10.1021/es0340782.
    Lee, E., Glover, C.M., Rosario-Ortiz, F.L., 2013. Photochemical formation of hydroxyl radical from effluent organic matter: Role of composition. Environmental Science & Technology, 47(21), 12073-12080. https://doi.org/10.1021/es402491t.
    Leifer, A., 1988. The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice. American Chemical Society.
    Liang, C., Zhao, H., Deng, M., Quan, X., Chen, S., Wang, H., 2015. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin. Journal of Environmental Sciences, 27, 115-123. https://doi.org/10.1016/j.jes.2014.08.015.
    Niu, X.Z., Liu, C., Gutierrez, L., Croué, J.-P., 2014. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter. Water Research, 66, 140-148. https://doi.org/10.1016/j.watres.2014.08.017.
    Niu, X.Z., Busetti, F., Langsa, M., Croué, J.-P., 2016. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Research, 106, 214-222. https://doi.org/10.1016/j.watres.2016.10.002.
    Niu, X.Z., Glady-Croue, J., Croue, J.P., 2017. Photodegradation of sulfathiazole under simulated sunlight: Kinetics, photo-induced structural rearrangement, and antimicrobial activities of photoproducts. Water Research, 124, 576-583. https://doi.org/10.1016/j.watres.2017.08.019.
    Niu, X.Z., Moore, E.G., Croue, J.-P., 2018. Excited triplet state interactions of fluoroquinolone norfloxacin with natural organic matter: A laser spectroscopy study. Environmental Science & Technology, 52(18), 10426-10432. https://doi.org/10.1021/acs.est.8b02835.
    Niu, X.Z., Croué, J.-P., 2019. Photochemical production of hydroxyl radical from algal organic matter. Water Research, 161, 11-16. https://doi.org/10.1016/j.watres.2019.05.089.
    Niu, X.Z., Harir, M., Schmitt-Kopplin, P., Croué, J.-P., 2019. Sunlight-induced phototransformation of transphilic and hydrophobic fractions of Suwannee River dissolved organic matter. Science of The Total Environment, 694, 133737. https://doi.org/10.1016/j.scitotenv.2019.133737.
    Remucal, C.K., McNeill, K., 2011. Photosensitized amino acid degradation in the presence of riboflavin and its derivatives. Environmental Science & Technology, 45(12), 5230-5237. https://doi.org/10.1021/es200411a.
    Romero-Maraccini, O.C., Sadik, N.J., Rosado-Lausell, S.L., Pugh, C.R., Niu, X.Z., Croue, J.-P., Nguyen, T.H., 2013. Sunlight-induced inactivation of human Wa and porcine OSU rotaviruses in the presence of exogenous photosensitizers. Environmental Science & Technology, 47(19), 11004-11012. https://doi.org/10.1021/es402285u.
    Sharpless, C.M., Aeschbacher, M., Page, S.E., Wenk, J., Sander, M., McNeill, K., 2014. Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances. Environmental Science & Technology, 48(5), 2688-2696. https://doi.org/10.1021/es403925g.
    Vaughan, P.P., Blough, N.V., 1998. Photochemical formation of hydroxyl radical by constituents of natural waters. Environmental Science & Technology, 32(19), 2947-2953. https://doi.org/10.1021/es9710417.
    Wenk, J., Nguyen, M.T., Nelson, K.L., 2019. Natural photosensitizers in constructed unit process wetlands: Photochemical characterization and inactivation of pathogen indicator organisms. Environmental Science & Technology, 53(13), 7724-7735. https://doi.org/10.1021/acs.est.9b01180.
    Xu, H., Cooper, W. J., Jung, J., Song, W., 2011. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), 632-638. https://doi.org/10.1016/j.watres.2010.08.024.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (372) PDF downloads(363) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint