Citation: | Jie Lin, Ji-sheng Zhang, Ke Sun, Xing-lin Wei, Ya-kun Guo. 2020: Numerical analysis of seabed dynamic response in vicinity of mono-pile under wave-current loading. Water Science and Engineering, 13(1): 74-82. doi: 10.1016/j.wse.2020.02.001 |
Bennett, R., 1977. Pore-water pressure measurements: Mississippi delta submarine sediments. Marine Geotechnology 2(1-4), 177−189. https://doi.org/10.1080/10641197709379778.
|
Biot, M.A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics 12(2), 155−164. https://doi.org/10.1063/1.1712886.
|
Duan, L.L., Liao, C.C., Jeng D.S., Chen, L.Y., 2017. 2D numerical study of wave and current-induced oscillatory non-cohesive soil liquefaction around a partially buried pipeline in a trench. Ocean Engineering 135, 39−51. https://doi.org/10.1016/j.oceaneng.2017.02.036.
|
Duan, L.L., Jeng, D.S., Wang S.H., Zhu, B., 2019. Numerical Investigation of the wave/current-induced responses of transient soil around a square mono-pile foundation. Journal of Coastal Research 35(3), 625−636. https://doi.org/10.2112/JCOASTRES-D-18-00072.1.
|
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39(1), 201−225. https://doi.org/10.1016/0021-9991(81)90145-5.
|
Hsu, H. C., Chen, Y.Y., Hsu, J.R.C., Tseng, W.J., 2009. Nonlinear water waves on uniform current in Lagrangian coordinates. Journal of Nonlinear Mathematical Physics 16(1), 47−61. https://doi.org/10.1142/S1402925109000054.
|
Jeng, D.S., Cha, D.H., Lin, Y.S., Hu, P.S., 2001. Wave-induced pore pressure around a composite breakwater. Ocean Engineering 28(10), 1413−1435. https://doi.org/10.1016/S0029-8018(00)00059-7.
|
Kriebel, D.L., 1998. Nonlinear wave interaction with a vertical circular cylinder: Wave forces. Ocean Engineering 25(7), 597−605. https://doi.org/10.1016/0029-8018(90)90029-6.
|
Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2.
|
Lin, Z.B., Pokrajac, D., Guo, Y.K., Jeng, D.S., Tang, T., Rey, N., Zheng, J.H., Zhang, J.S., 2017. Investigation of nonlinear wave-induced seabed response around mono-pile foundation. Coastal Engineering 121, 197−211. https://doi.org/10.1016/j.coastaleng.2017.01.002.
|
Liu, B., Jeng, D.S., Ye, G.L., Yang, B., 2015. Laboratory study for pore pressures in sandy deposit under wave loading. Ocean Engineering 106, 207−219. https://doi.org/10.1016/j.oceaneng.2015.06.029.
|
Liu, S.X., Li, Y.C., Li, G.W., 2007. Wave current forces on the pile group of base foundation for the East Sea Bridge, China. Journal of Hydrodynamics 19(6), 661−670. https://doi.org/10.1016/S1001-6058(08)60001-3.
|
Madsen, O.S., 1978. Wave-induced pore pressures and effective stresses in a porous bed. Géotechnique 28(4), 377–393. https://doi.org/10.1680/geot.1978.28.4.377.
|
Maeno, Y., Hasegawa, T., 1985. Evaluation of wave-induced pore pressure in sand layer by wave steepness. Coastal Engineering Journal 28(1), 31−44. https://doi.org/10.1080/05785634.1985.11924403.
|
Pu, J.H., Hussain, A., Guo, Y., Vardakastanis, N., Hanmaiahgari, P.R., Lam, D., 2019. Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction. Water Science and Engineering 12(2), 121–128. https://doi.org/10.1016/j.wse.2019.06.003.
|
Qi, W.G., Gao, F.P., 2014. Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coastal Engineering 83, 72–81. http://dx.doi.org/10.1016/j.coastaleng.2013.10.007.
|
Rodi, W., 1993. Turbulence Models and their Application in Hydraulics: State-of-the-Art Review, 3rd ed. Balkema, Rotterdam.
|
Seed, H.B., Idriss, I.M., 1971. A simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundations Division 97, 1249-1273.
|
Sui, T.T, Zhang, C., Guo, Y.K, Zheng, J.H., Jeng, D.S., Zhang, J.S., Zhang, W., 2016. Three-dimensional numerical model for wave-induced seabed response around mono-pile. Ships and Offshore Structures 11(6), 6672–678. https://doi.org/10.1080/17445302.2015.1051312.
|
Sui, T.T., Zheng, J.H., Zhang, C. Jeng, D.S., Zhang, J.S., Guo, Y.K., He, R., 2017. Consolidation of unsaturated seabed around an inserted pile foundation and its effects on the wave-induced momentary liquefaction. Ocean Engineering 131, 308–321. https://doi.org/10.1016/j.oceaneng.2016.10.019.
|
Sumer, B.M., 2014. Liquefaction around Marine Structures. World Scientific Publishing Co. Pte. Ltd., Hackensack.
|
Tao, W.Y., He, R., Zheng, J.H., 2018.Analysis on horizontal-rocking vibrations of monopile supporting wind turbine. Journal of Hohai University (Natural Sciences) 46(3), 260-267(in Chinese). https://doi.org /10.3876/j.issn.1000-1980.2018.03.011.
|
Tsai, C.P., 1995. Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Ocean Engineering 22(1), 1–18. https://doi.org/10.1016/0029-8018(94)00042-5.
|
Umeyama, M. 2010. Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current. Journal of Waterway, Port, Coastal, and Ocean Engineering 137(2), 85–94. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000067.
|
Wei, X.L., 2018. Wave-induced Dynamic Response of Seabed around Steel Pipe Pile. M. E. Dissertation. Hohai University, Nanjing (in Chinese).
|
Yamamoto, T., Koning, H.L., Sellmeijer, H., 1978. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics 87(1), 193–206. https://doi.org/10.1017/S0022112078003006.
|
Ye, J.H., Jeng, D.S., 2012. Response of porous seabed to natural loadings: Waves and currents. J. Eng. Mech. 138(6), 601–613. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000356.
|
Zhang, J.S., Zhang, Y., Zhang, C., Jeng, D.S., 2012. Numerical modeling of seabed response to combined wave-current loading. Journal of Offshore Mechanics and Arctic Engineering 135(3), 75–88. https://doi.org/10.1115/1.4023203.
|
Zhang, J.S., Zhang, Y., Jeng, D.S., Liu, P.L.F., Zhang, C., 2014. Numerical simulation of wave-current interaction using a RANS solver. Ocean Engineering 74, 157−164. https://doi.org/10.1016/j.oceaneng.2013.10.014.
|
Zhao, H.Y., Jeng, D.S., Liao, C.C., Zhu J.F., 2017. Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation. Coastal Engineering 128, 1−21. https://doi.org/10.1016/j.coastaleng.2017.07.002.
|
Zhao, Y.F., 2010. Three-dimensional Numerical Simulation of Wave Force on the Offshore Wind Turbine Structure and Scour around Foundation. Tianjin University, Tianjin (in Chinese).
|
Zheng, J.H., Zhang, C., Demirbilek, Z., Lin L.H., 2014. Numerical study of sandbar migration under wave-undertow interaction. Journal of Waterway, Port, Coastal, and Ocean Engineering 140(2), 146−159. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000231.
|