Citation: | Christopher Kiiza, Shun-qi Pan, Bettina Bockelmann-Evans, Akintunde Babatunde. 2020: Predicting pollutant removal in constructed wetlands using artificial neural networks (ANNs). Water Science and Engineering, 13(1): 14-23. doi: 10.1016/j.wse.2020.03.005 |
Abdelhakeem, S.G., Aboulroos, S.A., Kamel, M.M., 2016. Performance of a vertical subsurface flow constructed wetland under different operational conditions. Journal of Advanced Research, 7(5), 803-814. https://doi.org/10.1016/j.jare.2015.12.002.
|
Abyaneh, H.Z., 2014. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Journal of Environmental Health Science & Engineering, 40(12), 1-8. https://doi.org/10.1186/2052-336X-12-40.
|
Akratos, C.S., Tsihrintzis, V.A., 2007. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 29(2), 173-191. https://doi.org/10.1016/j.ecoleng.2006.06.013.
|
Akratos, C.S., Papaspyros, J.N.E., Tsihrintzis, V.A., 2008. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 143(1-3), 96-110. https://doi.org/10.1016/j.cej.2007.12.029.
|
Akratos, C.S., Papaspyros, J.N.E., Tsihrintzis, V.A., 2009. Artificial neural network use in ortho-phosphate and total phosphorus removal prediction in horizontal subsurface flow constructed wetlands. Biosystems Engineering, 102(2), 190-201. https://doi.org/10.1016/j.biosystemseng.2008.10.010.
|
American Public Health Association (APHA), 2012. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, D.C.
|
Bagheri, M., Mirbagheri, S.A., Ehteshami, M., Bagheri, Z., 2015. Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks. Process Safety and Environmental Protection, 93, 111-123. https://doi.org/10.1016/j.psep.2014.04.006.
|
Bruch, I., Alewell, U., Hahn, A., Hasselbach, R., Alewell, C., 2014. Influence of soil physical parameters on removal efficiency and hydraulic conductivity of vertical flow constructed wetlands. Ecological Engineering, 68, 124-132. https://doi.org/10.1016/j.ecoleng.2014.03.069.
|
Cooper, P.F., Job, G.D., Green, M.B., Shutes, R.B.E., 1996. Reed Beds and Constructed Wetlands for Wastewater Treatment. WRC Publications, Marlow.
|
Dawson, C.W., Abrahart, R.J., Shamseldin, A.Y., Wilby, R.L., 2006. Flood estimation at ungauged sites using artificial neural networks. Journal of Hydrology, 319(1-4),192-201. https://doi.org/10.1016/j.jhydrol.2005.07.032.
|
Ellis, J.B., Shutes, R.B.E., Revitt, M.D., 2003. Constructed Wetlands and Links with Sustainable Drainage Systems. Urban Pollution Research Centre, Middlesex University, London.
|
Facility for Advancing Water Biofiltration (FAWB), 2009. Biofiltration Filter Media Guidelines (Version 3.01). Facility for Advancing Water Biofiltration, Melbourne.
|
George, D., Mallery, P., 2016. IBM SPSS Statistics 23 Step by Step: A Simple Guide and Reference. Routledge, New York.
|
Gunawardana, C., Egodawatta, P., Goonetilleke, A., 2014. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces. Environmental Pollution, 184, 44-53. https://doi.org/10.1016/j.envpol.2013.08.010.
|
Hamed, M.M., Khalafallah, M.G., Hassanien, E.A., 2004. Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919-928.https://doi.org/10.1016/j.envsoft.2003.10.005.
|
Herngren, L., Goonetilleke, A., Ayoko, G.A., 2006. Analysis of heavy metals in road-deposited sediments. Analytica Chimica Acta, 571(2), 270-278. https://doi.org/10.1016/j.aca.2006.04.064.
|
Jones, A.J., Margetts, S., Durrant, P., 2000. The winGamma User Guide. Cardiff University, Cardiff.
|
Kadlec, R.H., 2000. The inadequacy of first-order treatment wetland models. Ecological Engineering, 15(1-2), 105-119. https://doi.org/10.1016/S0925-8574(99)00039-7.
|
Langergraber, G., Simunek, J., 2005. Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands. Vadose Zone Journal, 4(4), 924-938. https://doi.org/10.2136/Vzj2004.0166.
|
Langergraber, G., 2007. Simulation of the treatment performance of outdoor subsurface flow constructed wetlands in temperate climates. Science of the total Environment, 380(1-3), 210-219. https://doi.org/10.1016/j.scitotenv.2006.10.030.
|
Langergraber, G., Prandtstetten, C., Pressl, A., Sleytr, K., Leroch, K., Rohrhofer, R., Haberl, R., 2008. Investigations on nitrogen removal in a two-stage subsurface vertical flow constructed wetland. In: Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands. Springer, pp. 199-209.
|
Lavrova, S., Koumanova, B., 2013. Nutrients and organic matter removal in a vertical-flow constructed wetland. In: Patil, Y.B., Rao, P., Eds., Applied Bioremediation: Active and Passive Approaches. InTech Open Science, Rijeka.
|
Lee, E.R., Mostaghimi, S., Wynn, T.M., 2002. A model to enhance wetland design and optimize nonpoint source pollution control. Journal of the American Water Resources Association, 38(1), 17-32.
|
Li, W., Zhang, Y., Cui, L.J., Zhang, M.Y., Wang, Y.F., 2015. Modeling total phosphorus removal in an aquatic environment restoring horizontal subsurface flow constructed wetland based on artificial neural networks. Environmental Science and Pollution Research, 22(16), 12347-12354.
|
Lin, B., Syed, M., Falconer, R.A., 2008. Predicting faecal indicator levels in estuarine receiving waters: An integrated hydrodynamic and ANN modelling approach. Environmental Modelling & Software, 23(6), 729-740. https://doi.org/10.1016/j.envsoft.2007.09.009.
|
Lucas, R., 2015. Design and Experimental Assessment of Stormwater Constructed Wetland Systems, Ph. D. Dissertation. Cardiff University, Cardiff.
|
Lucas, R., Earl, E.R., Babatunde, A.O., Bockelmann-Evans, B.N., 2015. Constructed wetlands for stormwater management in the UK: Aconcise review. Civil Engineering and Environmental Systems, 32(3), 251-268. https://doi.org/10.1080/10286608.2014.958472.
|
Lyu, T., Zhang, L., Xu, X., Arias, C.A., Brix, H., Carvalho, P.N., 2018. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environmental Pollution, 233, 71-80. https://doi.org/10.1016/j.envpol.2017.10.040.
|
May, D.B., Sivakumar, M., 2009. Prediction of urban stormwater quality using artificial neural networks. Environmental Modelling & Software, 24(2), 296-302. https://doi.org/10.1016/j.envsoft.2008.07.004.
|
May, R.J., Maier H. R., Dandy, G.C., 2009. Developing artificial neural networks for water quality modelling and analysis. In: Hanrahan, G., Ed., Modelling of Pollutants in Complex Environmental Systems. ILM Publications.
|
Mburu, N., Sanchez-Ramos, D., Rousseau, D.P.L., van Bruggen, J.J.A., Thumbi, G., Stein, O.R., Hook, P.B., Lens, P.N.L., 2012. Simulation of carbon, nitrogen and sulphur conversion in batch-operated experimental wetland mesocosms. Ecological Engineering, 42, 304-315. https://doi.org/10.1016/j.ecoleng.2012.02.003.
|
Mburu, N., Rousseau, D.P., Stein, O.R., Lens, P.N., 2014. Simulation of batch-operated experimental wetland mesocosms in AQUASIM biofilm reactor compartment. Journal of Environmental Management, 134, 100-108. https://doi.org/10.1016/j.jenvman.2014.01.005.
|
Seidel, K., 1965. Phenol-AbbauimWasserdurch Scirpus lacustris L. während einer Versuchsdauer von 31Monaten. Naturwissenschaften, 52(13), 398. https://doi.org/10.1007/BF00621438.
|
Taylor, C.R., Hook, P.B., Stein, O.R., Zabinski, C.A., 2011. Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms. Ecological Engineering, 37(5), 703-710. https://doi.org/10.1016/j.ecoleng.2010.05.007.
|
Torrens, A., Molle, P., Boutin, C., Salgot, M., 2009. Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent. Water Research, 43(7), 1851-1858. https://doi.org/10.1016/j.watres.2009.01.023.
|
United Nations, 2018. Revision of World Urbanization Prospects. United Nations, New York.
|
Wang, W.L., Gao, J.Q., Guo, X., Li, W.C., Tian, X.Y., Zhang, R.Q., 2012. Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river. Ecological Engineering, 49, 93-103. https://doi.org/10.1016/j.ecoleng.2012.08.016.
|
Wu, H.M, Fan, J.L, Zhang, J., Ngo, H.H., Guo, W.S, Hu, Z., Liang, S., 2015. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths. Bioresource Technology, 176, 163-168. https://doi.org/10.1016/j.biortech.2014.11.041.
|
Wynn, T.M., Liehr, S.K., 2001. Development of a constructed subsurface-flow wetland simulation model. Ecological Engineering, 16(4), 519-536. https://doi.org/10.1016/S0925-8574(00)00115-4.
|
Zhu, D.L., Sun, C., Zhang, H.H., Wu, Z.L., Jia, B., Zhang, Y., 2012. Roles of vegetation, flow type and filled depth on livestock wastewater treatment through multi-level mineralized refuse-based constructed wetlands. Ecological Engineering, 39, 7-15. https://doi.org/10.1016/j.ecoleng.2011.11.002.
|