Citation: | Alvise Finotello, Marco Marani, Luca Carniello, Mattia Pivato, Marcella Roner, Laura Tommasini, Andrea D’alpaos. 2020: Control of wind-wave power on morphological shape of salt marsh margins. Water Science and Engineering, 13(1): 45-56. doi: 10.1016/j.wse.2020.03.006 |
Adam, P., 1990. Salt Marsh Ecology. Cambridge University Press, New York.
|
Allen, J.R.L., 1993. Muddy alluvial coasts of Britain: Field criteria for shoreline position and movement in the recent past. Proceedings of the Geologists’ Association, 104(4), 241–262. https://doi.org/10.1016/S0016-7878(08)80044-2.
|
Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., Silliman, B.R., 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193. https://doi.org/10.1890/10-1510.1.
|
Belliard, J.-P., Toffolon, M., Carniello, L., D’Alpaos, A., 2015. An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts. Journal of Geophysical Research: Earth Surface, 120(6), 1040–1064. https://doi.org/10.1002/2015JF003445.
|
Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., Marani, M., 2006. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sensing of Environment, 105(1), 54–67. https://doi.org/10.1016/j.rse.2006.06.006.
|
Bendoni, M., Francalanci, S., Cappietti, L., Solari, L., 2014. On salt marshes retreat: Experiments and modeling toppling failures induced by wind waves. Journal of Geophysical Research: Earth Surface, 119(3), 603–620. https://doi.org/10.1002/2013JF002967.
|
Bendoni, M., Mel, R., Lanzoni, S., Francalanci, S., Oumeraci, H., Solari, L., 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resources Research, 52(2), 1446–1464. https://doi.org/10.1002/2015WR017966.
|
Bonham, C.D., 1989. Measurements for Terrestrial Vegetation. John Wiley & Sons, New York.
|
Breugem, W.A., Holthuijsen, L.H., 2006. Generalized shallow water wave growth from Lake George. Journal of Waterway, Port, Coastal, and Ocean Engineering 133(3), 173–182. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:3(173).
|
Broome, S.W., Seneca, E.D., Woodhouse, W.W., 1988. Tidal salt marsh restoration. Aquatic Botany, 32(1-2), 1–22. https://doi.org/10.1016/0304-3770(88)90085-X.
|
Caniglia, G., Contin, G., Fusco, M., Anoè, A., Zanaboni, A., 1997. Confronto su base vegetazionale tra due barene della laguna di Venezia. Fitosociologia, 34, 111–119 (in Italian).
|
Carlisle, B., Carullo, M., Smith, J., Wigand, C., McKinney, R., Charpentier, M., Fillis, D., Stolt, M., 2006. Rapid Method for Assessing Estuarine (Salt) Marshes in New England, Version 1.4. Patuxent Wildlife Research Center, Laurel.
|
Carniello, L., Defina, A., Fagherazzi, S., D’Alpaos, L., 2005. A combined wind wave-tidal model for the Venice Lagoon, Italy. Journal of Geophysical Research: Earth Surface, 110, 1–15. https://doi.org/10.1029/2004JF000232.
|
Carniello, L., Defina, A., D’Alpaos, L., 2009. Morphological evolution of the Venice Lagoon: Evidence from the past and trend for the future. Journal of Geophysical Research: Earth Surface, 114(F4), 1–10. https://doi.org/10.1029/2008JF001157.
|
Carniello, L., D’Alpaos, A., Defina, A., 2011. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuarine, Coastal and Shelf Science, 92(2), 263–276. https://doi.org/10.1016/j.ecss.2011.01.001.
|
Carniello, L., Defina, A., D’Alpaos, L., 2012. Modeling sand-mud transport induced by tidal currents and wind waves in shallow microtidal basins: Application to the Venice Lagoon (Italy). Estuarine, Coastal and Shelf Science, 102-103, 105–115. https://doi.org/10.1016/j.ecss.2012.03.016.
|
Carniello, L., D’Alpaos, A., Botter, G., Rinaldo, A., 2016. Statistical characterization of spatio-temporal sediment dynamics in the Venice Lagoon. Journal of Geophysical Research: Earth Surface, 121(5), 1049–1064. https://doi.org/10.1002/2015JF003793.
|
Cazzin, M., Ghirelli, L., Mion, D., Scarton, F., 2009. Completamento della cartografia della vegetazione e degli habitat laguna di Venezia: Anni 2005–2007. Lavori Societa Veneziana di Scienze Naturali, 34, 81–89 (in Italian).
|
Chen, X.D., Zhang, C.K., Paterson, D.M., Thompson, C.E.L., Townend, I.H., Gong, Z., Zhou, Z., 2017. Hindered erosion: The biological mediation of noncohesive sediment behavior. Water Resources Research, 53(6), 4787–4801. https://doi.org/doi: 10.1002/2016WR020105.
|
Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C., 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles. 17(4), 1111. https://doi.org/10.1029/2002gb001917.
|
Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., Townend, I.H., 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346, 1–16. https://doi.org/10.1016/j.margeo.2013.08.005.
|
Cosma, M., Ghinassi, M., D’Alpaos, A., Roner, M., Finotello, A., Tommasini, L., Gatto, R., 2019. Point-bar brink and channel thalweg trajectories depicting interaction between vertical and lateral shifts of microtidal channels in the Venice Lagoon (Italy). Geomorphology. 342, 37–50. https://doi.org/10.1016/j.geomorph.2019.06.009.
|
Costanza, R., Déarge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K.E., Naeem, S., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260. https://doi.org/10.1038/387253a0.
|
Da Lio, C., D’Alpaos, A., Marani, M., 2013. The secret gardener: Vegetation and the emergence of biogeomorphic patterns in tidal environments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 371(2004), 20120367. https://doi.org/10.1098/rsta.2012.0367.
|
D’Alpaos, A., Lanzoni, S., Marani, M., Rinaldo, A., 2007. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface, 112(F1), 1–17. https://doi.org/10.1029/2006JF000537.
|
D’Alpaos, A., Mudd, S.M., Carniello, L., 2011. Dynamic response of marshes to perturbations in suspended sediment concentrations and rates of relative sea level rise. Journal of Geophysical Research: Earth Surface, 116(F4), 1–13. https://doi.org/10.1029/2011JF002093.
|
D’Alpaos, A., Carniello, L., Rinaldo, A., 2013. Statistical mechanics of wind wave-induced erosion in shallow tidal basins: Inferences from the Venice Lagoon. Geophysical Research Letters, 40(13), 3402–3407. https://doi.org/10.1002/grl.50666.
|
D’Alpaos, A., Marani, M., 2016. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Advances in Water Resources, 93, 265–275. https://doi.org/10.1016/j.advwatres.2015.09.004.
|
D’Alpaos, L., Defina, A., 2007. Mathematical modeling of tidal hydrodynamics in shallow lagoons: A review of open issues and applications to the Venice Lagoon. Computers and Geosciences, 33(4), 476–496. https://doi.org/10.1016/j.cageo.2006.07.009.
|
D’Alpaos, L., 2010. Fatti e misfatti di idraulica lagunare. La laguna di Venezia dalla diversione dei fiumi alle nuove opere delle bocche di porto. Istituto Veneto di Scienze, Lettere ed Arti, Venice (in Italian).
|
Day, J.W., Britsch, L.D., Hawes, S.R., Shaffer, G.P., Reed, D.J., Cahoon, D.R., 2000. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries, 23(4), 425–423. https://doi.org/10.2307/1353136.
|
Day, J.W., Boesch, D.F., Clairain, E.J., Kemp, G.P., Laska, S.B., Mitsch, W.J., Orth, K., Mashriqui, H., Reed, D.J., Shabman, L., et al., 2007. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science, 315(5819), 1679–1684. https://doi.org/10.1126/science.1137030.
|
Defina, A., 2000. Two-dimensional shallow flow equations for partially dry areas. Water Resources Research, 36(11), 3251–3264. https://doi.org/10.1029/2000WR900167.
|
Deheyn, D.D., Shaffer, L.R., 2007. Saving Venice: Engineering and ecology in the Venice Lagoon. Technology in Society, 29(2), 205–213. https://doi.org/10.1016/j.techsoc.2007.01.014.
|
Delaune, R.D., Pezeshki, S.R., 2003. The role of soil organic carbon in maintaining surface elevation in rapidly subsiding U.S. Gulf of Mexico coastal marshes. Water, Air, and Soil Pollution: Focus, 3, 167–179. https://doi.org/10.1023/A:1022136328105.
|
Donnelly, J.P., Bertness, M.D., 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences, 98(25), 14218–14223. https://doi.org/10.1073/pnas.251209298.
|
Evans, B.R., Möller, I., Spencer, T., Smith, G., 2019. Dynamics of salt marsh margins are related to their three-dimensional functional form. Earth Surface Processes and Landforms, 44(9), 1816–1827. https://doi.org/10.1002/esp.4614.
|
Feagin, R.A., Barbier, E.B., Koch, E.W., Silliman, B.R., Hacker, S.D., Wolanski, E., Primavera, J.H., Granek, E.F., Polasky, S., Aswani, S., et al., 2008. Vegetation’s role in coastal protection. Science, 320(5873), 176–177. https://doi.org/10.1126/science.320.5873.176b.
|
Feagin, R.A., Lozada-Bernard, S.M, Ravens, T.M., Möller, I., Yeager, K.M., Baird, A.H., 2009. Does vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of Sciences of the United States of America, 106, 10109–10113. https://doi.org/ 10.1073/pnas.0901297106.
|
Ferrarin, C., Tomasin, A., Bajo, M., Petrizzo, A., Umgiesser, G., 2015. Tidal changes in a heavily modified coastal wetland. Continental Shelf Research, 101, 22–33. https://doi.org/10.1016/j.csr.2015.04.002.
|
Finotello, A., Lanzoni, S., Ghinassi, M., Marani, M., Rinaldo, A., D’Alpaos, A., 2018. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proceedings of the National Academy of Sciences, 115(7), 1463–1468. https://doi.org/10.1073/pnas.1711330115.
|
Finotello, A., Canestrelli, A., Carniello, L., Ghinassi, M., D’Alpaos, A., 2019a. Tidal flow asymmetry and discharge of lateral tributaries drive the evolution of a microtidal meander in the Venice Lagoon (Italy). Journal of Geophysical Research: Earth Surface, 124(12), 3043–3066. https://doi.org/10.1029/2019jf005193.
|
Finotello, A., Lentsch, N., Paola, C., 2019b. Experimental delta evolution in tidal environments: Morphologic response to relative sea-level rise and net deposition. Earth Surface Processes and Landforms, 44(10), 2000–2015. https://doi.org/10.1002/esp.4627.
|
Finotello, A., D’Alpaos, A., Bogoni, M., Ghinassi, M., Lanzoni, S., 2020. Remotely-sensed planform morphologies reveal fluvial and tidal nature of meandering channels. Scientific Reports, 10, 1–13. https://doi.org/10.1038/s41598-019-56992-w.
|
FitzGerald, D.M., Hughes, Z., 2019. Marsh processes and their response to climate change and sea-level rise. Annual Review of Earth and Planetary Sciences, 47, 481–517. https://doi.org/10.1146/annurev-earth-082517-010255.
|
Gatto, P., Carbognin, L., 1981. The Lagoon of Venice: Natural environmental trend and man-induced modification. Hydrological Sciences Bulletin, 26(4), 379–391. https://doi.org/10.1080/02626668109490902.
|
Gedan, K.B., Silliman, B.R., Bertness, M.D., 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science, 1, 117–141. https://doi.org/10.1146/annurev.marine.010908.163930.
|
Ghinassi, M., D'alpaos, A., Gasparotto, A., Carniello, L., Brivio, L., Finotello, A., Roner, M., Franceschinis, E., Realdon, N., Howes, N., et al., 2018a. Morphodynamic evolution and stratal architecture of translating tidal point bars: Inferences from the northern Venice Lagoon (Italy). Sedimentology, 65(4), 1354–1377. https://doi.org/10.1111/sed.12425.
|
Ghinassi, M., Brivio, L., D’Alpaos, A., Finotello, A., Carniello, L., Marani, M., Cantelli, A., 2018b. Morphodynamic evolution and sedimentology of a microtidal meander bend of the Venice Lagoon (Italy). Marine and Petroleum Geology 96, 391–404. https://doi.org/ 10.1016/j.marpetgeo.2018.06.011.
|
Ghinassi, M., D’Alpaos, A., Tommasini, L., Brivio, L., Finotello, A., Stefani, C., 2019. Tidal currents and wind waves controlling sediment distribution in a subtidal point bar of the Venice Lagoon (Italy). Sedimentology, 66(7), 2926–2949. https://doi.org/10.1111/sed.12616.
|
Howes, N., FitzGerald, D.M., Hughes, Z.J., Georgiou, I.Y., Kulp, M., Miner, M.D., Smith, J.M., Barras, J., 2010. Hurricane-induced failure of low salinity wetlands. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14014–14019. https://doi.org/10.1073/pnas.0914582107.
|
Hu, Z., van Belzen, J., van der Wal, D., Balke, T., Wang, Z.B., Stive, M., Bouma, T.J., 2015. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing. Journal of Geophysical Research: Biogeosciences, 120(7), 1450–1469. https://doi.org/10.1002/2014JG002870.
|
Kearney, W.S., Fagherazzi, S., 2016. Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications, 120(7), 1–7. https://doi.org/10.1038/ncomms12287.
|
Kerr, A.M., Baird, A.H., 2007. Natural barriers to natural disasters. BioScience, 57(2), 102–103. https://doi.org/10.1641/b570202.
|
Kirwan, M.L., Murray, A.B., 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6118–6122. https://doi.org/10.1073/pnas.0700958104.
|
Kirwan, M.L., Mudd, S.M., 2012. Response of salt-marsh carbon accumulation to climate change. Nature, 489, 550–553. https://doi.org/10.1038/nature11440.
|
Larsen, L.G., Harvey, J.W., 2010. How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide. The American Naturalist, 176(3), 66–79. https://doi.org/10.1086/655215.
|
Leonardi, N., Fagherazzi, S., 2014. How waves shape salt marshes. Geology, 42(10), 887–890. https://doi.org/10.1130/G35751.1.
|
Leonardi, N., Ganju, N.K., Fagherazzi, S., 2016a. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences, 113(1), 64–68. https://doi.org/10.1073/pnas.1510095112.
|
Leonardi, N., Defne, Z., Ganju, N.K., Fagherazzi, S., 2016b. Salt marsh erosion rates and boundary features in a shallow Bay. Journal of Geophysical Research?: Earth Surface, 121(10), 1861–1875. https://doi.org/10.1002/2016JF003975.
|
Luternauer, J.L., Atkins, R.J., Moody, A.I., Williams, H.E., Gibson, J.W., 1995. Salt marshes. Developments in Sedimentology, 53, 307–332. https://doi.org/10.1016/S0070-4571(05)80031-7.
|
Marani, M., Lanzoni, S., Silvestri, S., Rinaldo, A., 2004. Tidal landforms, patterns of halophytic vegetation and the fate of the Lagoon of Venice. Journal of Marine Systems, 51(1-4), 191–210. https://doi.org/10.1016/j.jmarsys.2004.05.012.
|
Marani, M., Silvestri, S., Belluco, E., Ursino, N., Comerlati, A., Tosatto, O., Putti. M., 2006. Spatial organization and ecohydrological interactions in oxygen-limited vegetation ecosystems. Water Resources Research. 42(6), W06D06. https://doi.org/10.1029/2005WR004582.
|
Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L., Rinaldo, A., 2010. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. Journal of Geophysical Research: Earth Surface, 115(F4), F04004. https://doi.org/10.1029/2009JF001600.
|
Marani, M., D’Alpaos, A., Lanzoni, S., Santalucia, M., 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters, 38(21), 1–5. https://doi.org/10.1029/2011GL048995.
|
Marani, M., da Lio, C., D’Alpaos, A., D’Alpaos, A., 2013. Vegetation engineers marsh morphology through multiple competing stable states. Proceedings of the National Academy of Sciences, 110(9), 3259–3263. https://doi.org/10.1073/pnas.1218327110.
|
Mariotti, G., Fagherazzi, S., Wiberg, P.L., McGlathery, K.J., Carniello, L., Defina, A., 2010. Influence of storm surges and sea level on shallow tidal basin erosive processes. Journal of Geophysical Research: Oceans, 115(C11), C11012. https://doi.org/10.1029/2009JC005892.
|
McLoughlin, S.M., Wiberg, P.L., Safak, I., Mcglathery, K.J., 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts, 38, 620–638. https://doi.org/10.1007/s12237-014-9841-2.
|
Mel, R., Carniello, L., D’Alpaos, L., 2019. Addressing the effect of the Mo.S.E. barriers closure on wind setup within the Venice Lagoon. Estuarine, Coastal and Shelf Science, 225(30), 104386. https://doi.org/10.1016/j.ecss.2019.106249.
|
Mion, D., Ghirelli, L., Cazzin, M., Cavalli, I., Scarton, F., 2010. Vegetazione alofila in laguna di Venezia?: Dinamiche a breve e medio termine. Lavori Societa Veneziana di Scienze Naturali, 35, 57–70 (in Italian).
|
Mitsch, W.J., Gosselink, J.G., 2000. The value of wetlands: Importance of scale and landscape setting. Ecological Economics, 35(1), 25–33. https://doi.org/10.1016/S0921-8009(00)00165-8.
|
Möller, I., Spencer, T., French, J.R.R., D.J.J., Dixon, M., 1999. Wave transformation over saltmarshes: A field and numerical modelling study from North Norfolk, England. Estuarine, Coastal and Shelf Science, 49(3), 411–426. https://doi.org/10.1006/ecss.1999.0509.
|
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B.K., Wolters, G., Jensen, K., Bouma, T.J., Lange, M.M., et al., 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7, 727–731. https://doi.org/ 10.1038/ngeo2251.
|
Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., Cahoon, D.R., 2002. Responses of coastal wetlands to rising sea leve. Ecology, 83(10), 2869–2877. https://doi.org/10.1890/0012-9658(2002)083
|
[2869:ROCWTR]2.0.CO;2.
|
Morris, J.T., Barber, D.C., Callaway, J.C., Chambers, R., Hagen, S.C., Hopkinson, C.S., Johnson, B.J., Megonigal, P., Neubauer, S.C., Troxler, T., et al., 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future, 4(4), 110–121. https://doi.org/10.1002/2015EF000334.
|
Mudd, S.M., Fagherazzi, S., Morris, J.T., Furbish, D.J., 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: Toward a predictive model of marsh morphologic and ecologic evolution. In: Fagherazzi, S., Marani, M., Blum, L.K., eds., The Ecogeomorphology of Tidal Marshes, Coastal and Estuarine Studies No. 59, American Geophysical Union, Washington, D.C., pp. 165–188.
|
Mudd, S.M., D’Alpaos, A., Morris, J.T., 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research: Earth Surface, 115(F3), F03029. https://doi.org/10.1029/2009JF001566.
|
Mueller, P., Schile-Beers, L.M., Mozdzer, T.J., Chmura, G.L., Dinter, T., Kuzyakov, Y., de Groot, A.V., Esselink, P., Smit, C., D'Alpaos, A., et al., 2018. Global-change effects on early-stage decomposition processes in tidal wetlands: Implications from a global survey using standardized litter. Biogeosciences, 15, 3189–3202. https://doi.org/10.5194/bg-15-3189-2018.
|
Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., 2018. Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier
|
Priestas, A.M., Fagherazzi, S., 2011. Morphology and hydrodynamics of wave-cut gullies. Geomorphology, 131(1-2), 1–13. https://doi.org/10.1016/j.geomorph.2011.04.004.
|
Pye, K., French, P., 1993. Erosion and Accretion Processes on British Salt Marshes. Cambridge Environmental Research Consultants.
|
Ratliff, K.M., Braswell, A.E., Marani, M., 2015. Spatial response of coastal marshes to increased atmospheric CO2. Proceedings of the National Academy of Sciences, 112(51), 15580–15584. https://doi.org/10.1073/pnas.1516286112.
|
Rogers, K., Woodroffe, C.D., 2014. Tidal flats and salt marshes. In: Masselink, G., Gehrels, R., eds., Coastal Environments and Global Change. John Wiley & Sons, Ltd., pp. 227–250.
|
Roner, M., D’Alpaos, A., Ghinassi, M., Marani, M., Silvestri, S., Franceschinis, E., Realdon, N., 2016. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice Lagoon, Italy. Advances in Water Resources, 93, 276–287. https://doi.org/10.1016/j.advwatres.2015.11.011.
|
Rupprecht, F., Möller, I., Paul, M., Kudella, M., Spencer, T., van Wesenbeeck, B.K., Wolters, G., Jensen, K., Bouma, T.J., Miranda-Lange, M., et al., 2017. Vegetation-wave interactions in salt marshes under storm surge conditions. Ecological Engineering, 100, 301–315. https://doi.org/10.1016/j.ecoleng.2016.12.030.
|
Sarretta, A., Pillon, S., Molinaroli, E., Guerzoni, S., Fontolan, G., 2010. Sediment budget in the Lagoon of Venice, Italy. Continental Shelf Research, 30(8), 934–949. https://doi.org/10.1016/j.csr.2009.07.002.
|
Schoutens, K., Heuner, M., Fuchs, E., Minden, V., Schulte-Ostermann, T., Belliard, J.P., Bouma, T.J., Temmerman, S., 2020. Nature-based shoreline protection by tidal marsh plants depends on trade-offs between avoidance and attenuation of hydrodynamic forces. Estuarine, Coastal and Shelf Science, 236, 106645. https://doi.org/10.1016/j.ecss.2020.106645.
|
Schwimmer, R.A., 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA. Journal of Coastal Research 17(3), 672–683. https://doi.org/10.2307/4300218.
|
Shepard, C.C., Crain, C.M., Beck, M.W., 2011. The Protective Role of Coastal Marshes: A Systematic Review and Meta-analysis. PLOS ONE, 6(11), e27374. https://doi.org/10.1371/journal.pone.0027374.
|
Signell, R.P., Chiggiato, J., Horstmann, J., Doyle, J.D., Pullen, J., Askari, F., 2010. High-resolution mapping of Bora winds in the northern Adriatic Sea using synthetic aperture radar. Journal of Geophysical Research: Oceans, 115(C4), 1–20. https://doi.org/10.1029/2009JC005524.
|
Silvestri, S., Defina, A., Marani, M., 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science, 62(1-2), 119–130. https://doi.org/10.1016/j.ecss.2004.08.010.
|
Temmerman, S., Bouma, T.J., Govers, G., Wang, Z.B., De Vries, M.B., Herman, P.M.J., 2005. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface, 110(F4), F04019. https://doi.org/10.1029/2005JF000301.
|
Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M.J., Ysebaert, T., de Vriend, H.J.D., 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504, 79–83. https://doi.org/10.1038/nature12859.
|
Tommasini, L., Carniello, L., Ghinassi, M., Roner, M., D’Alpaos, A., 2019. Changes in the wind-wave field and related salt-marsh lateral erosion: Inferences from the evolution of the Venice Lagoon in the last four centuries. Earth Surface Processes and Landforms, 44(8), 1633–1646. https://doi.org/10.1002/esp.4599.
|
Tonelli, M., Fagherazzi, S., Petti, M., 2010. Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research: Oceans, 115(C9), C09028. https://doi.org/10.1029/2009JC006026.
|
Tosi, L., Teatini, P., Brancolini, G., Zecchin, M., Carbognin, L., Affatato, A., Baradello, L., 2012. Three-dimensional analysis of the Plio-Pleistocene seismic sequences in the Venice Lagoon (Italy). Journal of the Geological Society, 169(5), 507–510. https://doi.org/10.1144/0016-76492011-093.
|
van de Vijsel, R.C., Belzen, J., Bouma, T.J., van der Wal, D., Cusseddu, V., Purkis, S.J., Rietkerk, M., van de Koppel, J., 2019. Estuarine biofilm patterns: Modern analogues for Precambrian self‐organization. Earth Surface Processes and Landforms, 4783. https://doi.org/10.1002/esp.4783.
|
Wang, H., van der, Wal, D., Li, X.Y., van Belzen, J., Herman, P.M.J., Hu, Z., Ge, Z.M., Zhang, L.Q., Bouma, T.J., 2017. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion. Journal of Geophysical Research: Earth Surface, 122(7), 1455–1470. https://doi.org/10.1002/2016JF004193.
|
Warren, R.S., Fell, P.E., Rozsa, R., Brawley, A.H., Orsted, A.C., Olson, E.T., Swamy, V., Niering, W.A., 2002. Salt marsh restoration in Connecticut: 20 years of science and management. Restoration Ecology, 10(3), 497–513. https://doi.org/10.1046/j.1526-100X.2002.01031.x.
|
Xin, P., Zhou, T.Z., Lu, C.H., Shen, C.J., Zhang, C.M., D’Alpaos, A., Li, L., 2017. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system. Advances in Water Resources, 103, 1–15. https://doi.org/10.1016/j.advwatres.2017.02.014.
|
Young, I.R.R., Verhagen, L.A.A., 1996. The growth of fetch-limited waves in water of finite depth,Part 1: Total energy and peak frequency. Coastal Engineering, 29(1-2), 47–78. https://doi.org/10.1016/S0378-3839(96)00007-5.
|
Yousefi Lalimi, F., Silvestri, S., D’Alpaos, A., Roner, M., Marani, M., 2018. The spatial variability of organic matter and decomposition processes at the marsh scale. Journal of Geophysical Research: Biogeosciences, 123(12), 3713–3727. https://doi.org/10.1029/2017JG004211.
|
Zarzuelo, C., D’Alpaos, A., Carniello, L., Ortega-Sánchez, M., Diez-Minguito, M., Finotello, A., Losada, M., 2015. Modeling sand-mud transport in a tidally-dominated bay: Cádiz. In: Proceedings of the XXIV Congress on Differential Equation and Applications, XIV Congress on Applied Mathematics. Càdiz, pp. 1-11.
|
Zarzuelo, C., López-Ruiz, A., D’Alpaos, A., Carniello, L., Ortega-Sánchez, M., 2018. Assessing the morphodynamic response of human-altered tidal embayments. Geomorphology, 320, 127–141. https://doi.org/10.1016/j.geomorph.2018.08.014.
|
Zecchin, M., Brancolini, G., Tosi, L., Rizzetto, F., Caffau, M., Baradello, L., 2009. Anatomy of the Holocene succession of the southern Venice Lagoon revealed by very high-resolution seismic data. Continental Shelf Research, 29(10), 1343–1359. https://doi.org/10.1016/j.csr.2009.03.006.
|
Zhou, Z., Olabarrieta, M., Stefanon, L., D’Alpaos, A., Carniello, L., Coco, G., 2014. A comparative study of physical and numerical modeling of tidal network ontogeny. Journal of Geophysical Research: Earth Surface, 119(4), 892–912. https://doi.org/10.1002/2014JF003092.
|