Citation: | Hai-tao Chen, Ji He, Wen-chuan Wang, Xiao-nan Chen. 2021: Simulation of maize drought degree in Xi'an City based on cusp catastrophe model. Water Science and Engineering, 14(1): 28-35. doi: 10.1016/j.wse.2020.06.008 |
Angelis, V., Angelis-Dimakis, A., Dimaki, K., 2015. The cusp catastrophe model in describing a bank's attractiveness as measured by its image. Procedia Economics and Finance, 19, 261-277. https://doi.org/10.1016/S2212-5671(15)00027-1.
|
Ashraf, M.S., Ahmad, I., Khan, N.M., Zhang, F., Bilal, A., Guo, J.L. 2020. Streamflow variations in monthly, seasonal, annual and extreme values using Mann-Kendall, Spearmen's rho and innovative trend analysis. Water Resources Management. 35, 243-261. https://doi.org/10.1007/s11269-020-02723-0.
|
Carrao, H., Russo, S., Sepulcre-Canto, G., Barbosa, P., 2016. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. International Journal of Applied Earth Observation and Geoinformation. 48, 74-84. https://doi.org/10.1016/j.jag.2015.06.011.
|
Champagne, C., Davidson, A., Cherneski, P., L'Heureux, J., Hadwen, T., 2015. Monitoring agricultural risk in Canada using L-band passive microwave soil moisture from SMOS. Journal of Hydrometeorology. 16(1), 5-18. https://doi.org/10.1175/JHM-D-14-0039.1.
|
Chen, X.N., Duan, C.Q., Liu, C.M., Cao, Y.S., 2009. Model of risk assessment for agricultural drought based on two-layer soil computing model. Transactions of the Chinese Society of Agricultural Engineering. 25(9), 51-55 (in Chinese). https://doi.org/10.3969/j.issn.1002-6819.2009.09.009.
|
Cheng, Y.B., Zhan, H.B., Yang, W.B., Bao, F., 2018. Deep soil water recharge response to precipitation in Mu Us Sandy Land of China. Water Science and Engineering, 11(2), 139-146. https://doi.org/10.1016/j.wse.2018.07.007.
|
Cui, D.W., 2016. Projection pursuit model for evaluation of flood and drought disasters based on chicken swarm optimization algorithm. Advances in Science and Technology of Water Resources, 36(2), 16-23 (in Chinese). https://doi.org/10.3880/j.issn.1006-7647.2016.02.004.
|
Dong, J.H., Zhang, L., Xu, Y.F., Chen, J.Y., Liu, Y.K., 2017. Application of catastrophe theory to determine the instability criterion for geo-mechanical model test. Advanced Engineering Sciences. 49(4), 18-25 (in Chinese). https://10.15961/j.jsuese.201601327. http://www.researchgate.net/publication/319458333_Application_of_Catastrophe_Theory_to_Determine_the_Instability_Criterion_for_Geo-mechanical_Model_Test
|
Edossa, D.C., Woyessa, Y.E., Welderufael, W.A., 2016. Spatiotemporal analysis of droughts using self-calibrating Palmer's Drought Severity Index in the central region of South Africa. Theoretical and Applied Climatology. 126(3-4), 643-657. https://doi.org/10.1007/s00704-015-1604-x.
|
Feng, L.Y., Hao, J.P., Liang, G.M., Chi, B.L., Li, N.N., Zhang, B.N., 2018. Effects of different cultivation factors on soil water content and grain yield during growth period of maize. Journal of Shanxi Agricultural Sciences. 46(1), 29-32 (in Chinese). https://doi.org/10.3969/j.issn.1002-2481.2018.01.08
|
Han, Y.L., Hu, Y.C., Zhang, N.N., Li, Y.Z., Liao, Y.C., Qin, X.L., Wen, X.X., 2018. Effects of film mulching period and modes on water consumption characteristics and yield of spring maize in the Loess Plateau. Acta Agriculturae Boreali-occidentalis Sinica. 27(3), 362-371 (in Chinese). https://doi.org/10.7606/j.issn.1004-1389.2018.03.009.
|
Hao, L.S., Wu, Y., Wang, R.Y., 2007. Impact of spring climate change on wheat yield in Lower Haihe Plain. Meteorology and Disaster Reduction Research. 30(4), 20-24 (in Chinese). http://d.wanfangdata.com.cn/Periodical/jxqxkj200704004
|
Lei, Z.D., Yang, S.X., Xie, S.C., 1988. Soil Hydrodynamics. Tsinghua University Press, Beijing (in Chinese).
|
Li, C.R., You, S.C., Wu, Y.F., Wang, Y.H., 2019. Improved crop water deficit index for monitoring drought disaster change process of spring maize in the Northeast China. Transactions of the Chinese Society of Agricultural Engineering. 35(21), 175-185 (in Chinese). https://doi.org/10.11975/j.issn.1002-6819.2019.21.021.
|
Li, H.M., Fan, J.Z., 2015. Analysis on the characteristics of meteorological drought in summer corn growth period in Guanzhong. Journal of Shaanxi Meteorology. (4), 1-5 (in Chinese).
|
Li, Y.H., 1999. Water-saving Irrigation Theory and Technology. Wuhan Hydraulic and Electric Power University Press, Wuhan (in Chinese).
|
Ling, F.H., 1984. Catastrophe theory: History, current situation and future. Advances in Mechanics. 14(4), 389-404 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ198404001.htm
|
McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the Eighth Conference on Applied Climatology. American Meteorological Society, Boston, pp. 179-184.
|
Mishra, A., Vu, T., Veettil, A.V., Entekhabi, D., 2017. Drought monitoring with soil moisture active passive (SMAP) measurements. Journal of Hydrology. 552, 620-632. https://doi.org/10.1016/j.jhydrol.2017.07.033.
|
Mohammad, N.T., Yousef, R., Carlo, D.M., Rasoul, M., 2020. A new method for joint frequency analysis of modified precipitation anomaly percentage and streamflow drought index based on the conditional density of copula functions. Water Resources Management. 34, 4217-4231. https://doi.org/10.1007/s11269-020-02666-6.
|
Rahmani, A., Golian, S., Brocca, L., 2016. Multiyear monitoring of soil moisture over Iran through satellite and reanalysis soil moisture products. International Journal of Applied Earth Observation and Geoinformation. 48, 85-95. https://doi.org/10.1016/j.jag.2015.06.009.
|
Rene, T., 1992. Structural stability and morphogenesis. Sichuan Education Press, Chengdu.
|
Sadeghfam, S., Khatibi, R., Hassanzadeh, Y., Daneshfaraz, R., Ghorban, M.A., 2017. Forced hydraulic jumps described by classic hydraulic equations reproducing cusp catastrophe features. Arabian Journal for Science and Engineering. 42(9), 4169-4179. https://doi.org/10.1007/s13369-017-2616-x.
|
Shi, Y.S., Wang, Y.Z., Chi, J.C., Wei, R.J., 2008. Impact of climate change on winter wheat production in the Hebei Plain. Chinese Journal of Eco-Agriculture. 16(6), 1444-1447 (in Chinese). https://doi.org/10.3724/SP.J.1011.2008.01444.
|
Trenberth, K.E., Dai, A, Schrier, G.V.D., Jones, P.D., Barichivich, J., Briffa, K.R., Sheffield, J., 2014. Global warming and changes in drought. Nature Climate Change, 4(1), 17-22. https://doi.org/10.1038/nclimate2067.
|
Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate. 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1.
|
Wang, X.D., Ma, X.Q., Xu, Y., Chen, C., 2013. Temporal analysis of the crop water surplus deficit index for the whole growth period in the Huaihe Basin. Resources Science. 35(3), 665-672 (in Chinese). http://d.wanfangdata.com.cn/Periodical_zykx201303025.aspx
|
Weng, B.S., Yan, D.H., 2010. Integrated strategies for dealing with droughts in changing environment in China. Resources Science. 32(2), 309-316 (in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-zrzy201002020.htm
|
Wu, H., Hayes, M.J., Weiss, A., Hu, Q., 2001. An evaluation of the standardized precipitation index, the China-Z index and the statistical Z-Score. International Journal of Climatology. 21(6), 745-758. https://doi.org/10.1002/joc.658.
|
Wu, H., Hubbard, K.G., Wilhite, D.A., 2004. An agricultural drought risk-assessment model for corn and soybeans. International Journal of Climatology. 24(6), 723-741. https://doi.org/10.1002/joc.1028.
|
Xiao, Y., Yang, S.F., Mi, L., 2020. A cusp catastrophe model for alluvial channel pattern and stability. Water. 12(3), 780. https://doi.org/10.3390/w12030780.
|
Xue, L.Q., Wei, Q., Wei G.H., 2019. Coupled simulation of surface water and groundwater in the main stream of Tarim River. Journal of Hohai University (Natural Sciences). 47(3), 195-201 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2019.03.002.
|
Zhao, H.Y., Zhang, W.Q., Zou, X.K., Zhang, Q., Shen, Z.Q., Mei, P., 2021. Temporal and spatial characteristics of drought in China under climate change. Chinese Journal of Agrometeorology. 42(1), 69-79 (in Chinese). https://doi.org/10.3969/j.issn.1000-6362.2021.01.007.
|