Citation: | Li-lei Mao, Yi-mei Chen, Xin Li. 2020: Characterizing ship-induced hydrodynamics in a heavy shipping traffic waterway via intensified field measurements. Water Science and Engineering, 13(4): 329-338. doi: 10.1016/j.wse.2020.11.001 |
Bellafiore, D., Zaggia, L., Broglia, R., Ferrarin, C., Barbariol, F., Zaghi, S., Lorenzetti, G., Manfè, G., De Pascalis, F., Benetazzo, A., 2018. Modeling ship-induced waves in shallow water systems: The Venice experiment. Ocean Engineering, 155, 227-239. https://doi.org/10.1016/j.oceaneng.2018.02.039.
|
Bertram, V., 2000. Practical Ship Hydrodynamics. Butterworth-Heinemann, Oxford.
|
Bhowmik, N.G., Xia, R.J., Mazumder, B.S., Soong, T.W., 1995. Return flow in rivers due to navigation traffic. Journal of Hydraulic Engineering, 121(12), 914-918. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(914).
|
Blaauw, H.G., de Groot, M.T., Knaap, F.C.M., Pilarczyk, K.W., 1984. Design of bank protection of inland navigation fairways. In: Proceedings of the International Conference on Flexible Armoured Revetments Incorporating Geotextiles. Thomas Telford, London, pp. 239-266. Chwang, A.T., Chen, Y., 2003. Field measurement of ship waves in Victoria Harbor. Journal of Engineering Mechanics, 129(10), 1138-1148. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:10(1138).
|
Dam, K.T., Tanimoto, K., Fatimah, E., 2008. Investigation of ship waves in a narrow channel. Journal of Marine Science & Technology, 13(3), 223-230. https://doi.org/10.1007/s00773-008-0005-6.
|
Fleit, G., Baranya, S., Rüther, N., Bihs, H., Krámer, T., Józsa, J., 2016. Investigation of the effects of ship induced waves on the littoral zone with field measurements and CFD modeling. Water, 8(7), 300. https://doi.org/10.3390/w8070300.
|
Göransson, G., Larson, M., Althage, J., 2014. Ship-generated waves and induced turbidity in the Göta Älv River in Sweden. Journal of Waterway Port Coastal & Ocean Engineering, 140(3). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000224.
|
Houser, C., 2010. Relative importance of vessel-generated and wind waves to salt marsh erosion in a restricted fetch environment. Journal of Coastal Research, 26(2), 230-240. https://doi.org/10.2112/08-1084.1.
|
Hu?Sig, A., Linke, T., Zimmermann, C., 2000. Effects from supercritical ship operation on inland canals. Journal of Waterway Port Coastal & Ocean Engineering, 126(3), 130-135. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:3(130).
|
Kriebel, D.L., Seelig, W.N., Judge, C., 2003. A unified description of ship-generated waves. In: Proceedings of U.S. Section PIANC Annual Meeting, PIANC.
|
Kriebel, D.L., Seelig, W.N., 2005. An empirical model for ship-generated waves. In: Proceedings of the 5th International Symposium on Ocean Wave Measurement and Analysis.
|
Kurdistani, S.M., Tomasicchio, G.R., Alessandro, F.D., Hassanabadi, L., 2019. River bank protection from ship-induced waves and river flow. Water Science and Engineering, 12(2), 129-135. https://doi.org/10.1016/j.wse.2019.05.002.
|
Mazumder, B.S., Bhowmik, N.G., Soong, T.W., 1993. Turbulence in rivers due to navigation traffic. Journal of Hydraulic Engineering, 119(5), 581-597. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:5(581).
|
Nanson, G.C., Krusenstierna, A.V., Bryant, E.A., Renilson, M.R., 1994. Experimental measurements of river-bank erosion caused by boat-generated waves on the Gordon River, Tasmania. River Research & Applications, 9(1), 1-14. https://doi.org/10.1002/rrr.3450090102.
|
Osborne, P.D., Boak, E.H., 1999. Sediment suspension and morphological response under vessel-generated wave groups: Torpedo Bay Auckland, New Zealand. Journal of Coastal Research, 15(2), 388-398.
|
Parchure, T.M., Davis, J.E., Mcadory, R.T., 2007. Modeling fine sediment resuspension due to vessel passage. Proceedings in Marine Science,
|
8, 449-464. https://doi.org/10.1016/S1568-2692(07)80026-X.
|
Parnell, K.E., Zaggia, L., Soomere, T., Lorenzetti, G., Scarpa, G.M., 2016. Depression waves generated by large ships in the Venice Lagoon. Journal of Coastal Research, 75(s1), 907-911. https://doi.org/10.2112/SI75-182.1.
|
PIANC, 2008. Considerations to Reduce Environmental Impacts of Vessels, Report 99. PIANC Inland Navigation Commission, Brussels.
|
Rapaglia, J., Zaggia, L., Ricklefs, K., Gelinas, M., Bokuniewicz, H., 2011. Characteristics of ships’ depression waves and associated sediment resuspension in Venice Lagoon, Italy. Journal of Marine Systems, 85(1-2), 45-56. https://doi.org/10.1016/j.jmarsys.2010.11.005.
|
Ravens, T.M., Thomas, R., 2006. Ship-wave induced sediment transport in tidal creeks. In: WIT Transactions on Ecology and the Environment: Environmental Problems in Coastal Regions VI, Vol. 88. WIT Press, Southampton, pp. 121-128. https://doi.org/10.2495/CENV060121.
|
Roo, S.D., 2013. Experimental Study of the Hydrodynamic Performance of a Nature-friendly Bank Protection Subject to Ship Waves in a Confined, Non-tidal Waterway. Ph. D. Dissertation. Ghent University, Ghent.
|
Roo, S.D., Troch, P., 2013. Field monitoring of ship wave action on environmentally friendly bank protection in a confined waterway. Journal of Waterway Port Coastal & Ocean Engineering, 139(6), 527-534. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000202.
|
Roo, S.D., Troch, P., 2015. Evaluation of the effectiveness of a living shoreline in a confined, non-tidal waterway subject to heavy shipping traffic. River Research & Applications, 31(8), 1028-1039. https://doi.org/10.1002/rra.2790.
|
Schiereck, G.J., 2001. Introduction to Bed, Bank and Shore Protection. Delft University Press, Delft.
|
Schludermann, E., Liedermann, M., Hoyer, H., Tritthart, M., Habersack, H., Keckeis, H., 2014. Effects of vessel-induced waves on the YOY-fish assemblage at two different habitat types in the main stem of a large river (Danube, Austria). Hydrobiologia, 729(1), 3-15. https://doi.org/10.1007/s10750-013-1680-9.
|
Schoellhamer, D.H., 1996. Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuarine Coastal and Shelf Science, 43(5), 533-548. https://doi.org/10.1006/ecss.1996.0086.
|
Soomere, T., 2007. Nonlinear components of ship wake waves. Applied Mechanics Reviews, 60(3), 120-138. https://doi.org/10.1115/1.2730847.
|
Soomere, T., 2009. Long ship waves in shallow water bodies. In: Quak, E., Soomere, T., eds., Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods. Springer, Berlin, Heidelberg, pp.193-228. https://doi.org/10.1007/978-3-642-00585-5_12.
|
Teschke, U., Peters, K., Baur, T., 2008. Analysis of ship waves in maritime waterways. In: Proceedings of the International Conference on Fluvial Hydraulics (River Flow). Cesme, pp. 2001-2009.
|
Velegrakis, A.F., Vousdoukas, M.I., Vagenas, A.M., Karambas, T., Dimou, K., Zarkadas, T., 2007. Field observations of waves generated by passing ships: A note. Coastal Engineering, 54(4), 369-375. https://doi.org/10.1016/j.coastaleng.2006.11.001.
|
Verney, R., Deloffre, J., Brun-Cottan, J.C., Lafite, R., 2007. The effect of wave induced turbulence on intertidal mudflats: Impact of boat traffic and wind. Continental Shelf Research, 27(5), 594-612. https://doi.org/10.1016/j.csr.2006.10.005.
|
Wolter, C., Arlinghaus, R., Sukhodolov, A., Engelhardt, C., 2004. A model of navigation-induced currents in inland waterways and implications for Juvenile fish displacement. Environmental Management, 34(5), 656-668. https://doi.org/10.1007/s00267-004-0201-z.
|
Zhou, J.B., Chen, W.L., 1996. Review of ship waves and riverbank slope protection project. Jiangsu Traffic Engineering, (1), 28-33 (in Chinese).
|
Zou, L., Larsson, L., 2013. Numerical predictions of ship-to-ship interaction in shallow water. Ocean Engineering, 72, 386-402. https://doi.org/10.1016/j.oceaneng.2013.06.015.
|