Volume 14 Issue 1
Aug.  2021
Turn off MathJax
Article Contents
Vladimir Joel Alzamora Guzmán, Julie Anne Glasscock. 2021: Analytical solution for a strong free-surface water vortex describing flow in a full-scale gravitational vortex hydropower system. Water Science and Engineering, 14(1): 72-79. doi: 10.1016/j.wse.2021.03.004
Citation: Vladimir Joel Alzamora Guzmán, Julie Anne Glasscock. 2021: Analytical solution for a strong free-surface water vortex describing flow in a full-scale gravitational vortex hydropower system. Water Science and Engineering, 14(1): 72-79. doi: 10.1016/j.wse.2021.03.004

Analytical solution for a strong free-surface water vortex describing flow in a full-scale gravitational vortex hydropower system

doi: 10.1016/j.wse.2021.03.004
More Information
  • Corresponding author: E-mail address: julie@kadagaya.org (Julie Anne Glasscock)
  • Received Date: 2020-09-21
  • Accepted Date: 2021-01-04
  • Available Online: 2021-03-29
  • Strong free-surface water vortices are found throughout industrial hydraulic systems used for water treatment, flow regulation, and energy generation. Previous models using the volumetric flow rate as a model input have generally been semi-empirical, and have tended to have some limitations in terms of the design of practical hydropower systems. In this study, an analytical model of a strong free-surface water vortex was developed. This model only requires the water head and geometric parameters as its inputs and calculates the maximum volumetric flow rate, air-core diameter, and rotational constant. Detailed experimental depth–discharge data from a full-scale gravitational vortex hydropower system, unavailable in the relevant literature, were obtained, and the simulated results showed excellent agreement with the experimental observations. These data could be used to verify similar models using laboratory-scale physical models in order to investigate the scaling effects. In contrast to previous models, this model does not assume a constant average velocity across the vortex radius and allows precise calculation of the resultant velocity vectors. Therefore, this model presents advantages in turbine design for energy generation systems.

     

  • Peer review under responsibility of Hohai University.
  • loading
  • Ackers, P., Crump, E.S., 1960. The vortex drop. Proceedings of the Institution of Civil Engineers 16(4), 433-442. https://doi.org/https://doi.org/10.1680/iicep.1960.11720.
    Alzamora Guzmán, V.J., Glasscock, J.A., Whitehouse, F., 2019. Design and construction of an off-grid gravitational vortex hydropower plant: A case study in rural Peru. Sustainable Energy Technologies and Assessments 35, 131-138. https://doi.org/10.1016/j.seta.2019.06.004.
    Bansal, R.K., 2010. A Textbook of Fluid Mechanics and Hydraulic Machines, 9th ed. Laxmi Publication Pty. Ltd., New Delhi.
    Dhakal, R., Chaulagain, R.K., Bajracharya, T., Shrestha, S., 2015. Economic feasibility study of gravitational water vortex power plant for the rural electrification of low head region of Nepal and it comparative study with other low head power plant. In: Proceedings of the 11th International Conference ASIAN Community Knowledge Networks for the Economy, Society, Culture, and Environmental Stability. Kathmandu, pp. 127-135. https://doi.org/10.13140/RG.2.1.4383.4483.
    Drioli, C., 1969. Esperienze su installazioni con pozzo di scarico a vortice. Energia Elettrica 66, 399-409 (in Italian). doi: 10.1007/BF02379720
    Hager, W.H., 1985. Head-discharge relation for vortex shaft. Journal of Hydraulic Engineering 111(6), 1015-1020. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(1015).
    Khan, N., 2016. Blade Optimization of Gravitational Water Vortex Turbine. PhD Dissertation. Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Khyber Pakhtunkhwa.
    Knauss, J.E., 1987. Swirling Flow Problems at Intakes. CRC Press/Balkema, Leiden.
    Kouris, P.S., 2000. Hydraulic Turbine Assembly, US Patent US006114773A.
    Kueh, T.C., Beh, S.L., Rilling, D., Ooi, Y., 2014. Numerical analysis of water vortex formation for the water vortex power plant. International Journal of Innovation and Management Technology 5(2), 111-115. https://doi.org/10.7763/IJIMT.2014.V5.496.
    Li, H.F., Chen, H.X., Ma, Z., Yi, Z., 2008. Experimental and numerical investigation of free surface vortex. Journal of Hydrodynamics 20(4), 485-491. https://doi.org/https://doi.org/10.1016/S1001-6058(08)60084-0.
    Mulligan, S., 2015. Experimental and Numerical Analysis of Three-Dimensional Free-Surface Turbulent Vortex Flows with Strong Circulation. PhD Dissertation. IT Sligo, Sligo.
    Mulligan, S., Casserly, J., Sherlock, R., 2015. Experimental modelling of flow in an open channel vortex chamber. In: E-Proceedings of the 36th IAHR World Congress. The Hague, pp. 1-12.
    Mulligan, S., Casserly, J., Sherlock, R., 2016. Effects of geometry on strong free-surface vortices in subcritical approach flows. Journal of Hydraulic Engineering 142 (11), 04016051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001194.
    Mulligan, S., Creedon, L., Casserly, J., Sherlock, R., 2018. An improved model for the tangential velocity distribution in strong free-surface vortices: An experimental and theoretical study. Journal of Hydraulic Research 57(4), 547-560. https://doi.org/10.1080/00221686.2018.1499050.
    Nishi, Y., Inagaki, T., 2017. Performance and flow field of a gravitation vortex type water turbine. International Journal of Rotating Machinery 2017, 2610508. https://doi.org/10.1155/2017/2610508.
    Pica, M., 1970. Scaricatori a vortice. Energia Elettrica 47, 1-18.
    Power, C., McNabola, A., Coughlan, P., 2016. A parametric experimental investigation of the operating conditions of gravitational vortex hydropower (GVHP). Journal of Clean Energy Technologies 4(2), 112-119. https://doi.org/10.7763/JOCET.2016.V4.263.
    Rahman, M., Hong, T., Tang, R., Sung, L., Tamiri, F.B.M., 2016. Experimental study the effects of water pressure and turbine blade lengths and numbers on the model free vortex power generation system. International Journal of Current Trends in Engineering Research 2(9), 13-17. http://www.researchgate.net/publication/308108697_Experimental_Study_the_Effects_of_Water_Pressure_and_Turbine_Blade_Lengths_Numbers_on_the_Model_Free_Vortex_Power_Generation_System
    Rankine, W.J.M., 1872. A Manual of Applied Mechanics. Charles Griffin and Company, Glasgow.
    Sritram, P., Treedet, W., Suntivarakorn, R., 2015. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant. In: Proceedings of the 4th Global Conference on Materials Science and Engineering (CMSE 2015). University of Macau-new campus. https://doi.org/10.1088/1757-899X/103/1/012018.
    Tao, T., 2011. An Introduction to Measure Theory. American Mathematical Society, Providence.
    Timilsina, A.B., Mulligan, S., Bajracharya, T.R., 2018. Water vortex hydropower technology: A state-of-the-art review of developmental trends. Clean Technologies and Environmental Policy 20(8), 1737-1760. https://doi.org/10.1007/s10098-018-1589-0.
    Turbulent, 2020. Turbulent Company Website. https://www.turbulent.be/[Retrieved Feb. 2, 2020].
    Vatistas, G.H., Panagiotakakos, G.D., Manikis, F.I., 2015. Extension of the n-vortex model to approximate the effects of turbulence. Journal of Aircraft 52(5), 1721-1725. https://doi.org/10.2514/1.C033238.
    Vorteco, 2016. Water Vortex Power Plants: Ecological Power Technology. http://www.vorteco.com/index_htm_files/Prosp-vortecoA4e8_140313.pdf [Retrieved Dec. 16, 2016].
    Wanchat, S., Suntivarakorn, R., 2011. Preliminary design of a vortex pool for electrical generation. Advance Science Letter 13(1), 173-177. https://doi.org/10.1166/asl.2012.3855.
    Zotlöterer, F., 2004. Hydroelectric Power Plant. Patent No. WO 2004/061295 A2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (300) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return