Volume 14 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
Noor Mohammad, Yomen Atassi. 2021: Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes. Water Science and Engineering, 14(2): 129-138. doi: 10.1016/j.wse.2021.06.004
Citation: Noor Mohammad, Yomen Atassi. 2021: Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes. Water Science and Engineering, 14(2): 129-138. doi: 10.1016/j.wse.2021.06.004

Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes

doi: 10.1016/j.wse.2021.06.004
More Information
  • Corresponding author: E-mail address: yomen.atassi@hiast.edu.sy (Yomen Atassi)
  • Received Date: 2020-11-09
  • Accepted Date: 2021-03-18
  • Available Online: 2021-06-18
  • This paper describes the preparation of a membrane of polyacrylonitrile (PAN) and its corresponding membrane coated with polyaniline (PANI) for the adsorption of heavy metal ions. Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology. The prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR). The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb2+ and Cr2O72-. The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium. Coated membranes with PANI showed better adsorption performance and their direct current (DC) conductivities were correlated to heavy metal ion concentrations. Adsorption isotherms were also performed, and the adsorption process was tested according to the Langmuir and Freundlich models. The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated. The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed. The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1 202.53 mg/g, respectively.

     

  • loading
  • Alcaraz-Espinoza, J.J., Chavez-Guajardo, A.E., Medina-Llamas, J.C., Andrade, C.A.S., Melo, C.P.D., 2015. Hierarchical composite polyaniline-(electrospun polystyrene) fibers applied to heavy metal remediation. ACS Appl. Mater. Interfaces 7(13), 7231-7240. https://doi.org/10.1021/acsami.5b00326.
    Aliabadi, M., Irani, M., Ismaeili, J., Najafzadeh, S., 2014. Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers. 45(2), 518-526. https://doi.org/10.1016/j.jtice.2013.04.016.
    Aluigi, A., Rombaldoni, F., Tonetti, C., Jannoke, L., 2014. Study of methylene blue adsorption on keratin nanofibrous membranes. J. Hazard Mater. 268, 156-165. https://doi.org/10.1016/j.jhazmat.2014.01.012.
    Al-Jallad, M., Atassi, Y., 2018. Aligned electrospun nanofiber poly(lactic acid) mats coated with conductive polyaniline: Anisotropy of electrical conductivity. J. Electrost. 96, 69-75. https://doi.org/10.1016/j.elstat.2018.10.005.
    Al-Qassar Bani Al-Marjeh, R., Atassi, Y., Mohammad, N., Badour, Y., 2019. Adsorption of methyl orange onto electrospun nanofiber membranes of PLLA coated with pTSA-PANI. Environ. Sci. Pollut. Res. 26, 37282-37295. https://doi.org/10.1007/s11356-019-06654-1.
    Bayrakci, M., Ozcan, F., Yilmaz, B., Ertul, S., 2017. Electrospun nanofibrous polyacrylonitrile/calixarene mats: An excellent adsorbent for the removal of chromate ions from aqueous solutions. Acta Chim. Slov. 64(3), 679-685. https://doi.org/10.17344/acsi.2017.3559.
    Chang, J., Wang, J.Q., Qu, J., Li, Y.V., Ma, L.J., Wang, L.F., Wang, X.X., Pan, K., 2016. Preparation of α-Fe2O3/polyacrylonitrile nanofiber mat as an effective lead adsorbent. Environ. Sci.: Nano 3(4), 894-901. https://doi.org/10.1039/C6EN00088F.
    Charerntanyarak, L., 1999. Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 39(10-11), 135-138. https://doi.org/10.2166/wst.1999.0642.
    Chen, Q., Zhu, L., Zhao, C., Zheng, J., 2012. Hydrogels for removal of heavy metals from aqueous solution. J. Environ. Anal. Toxicol. (S2), 1-4. https://doi.org/10.4172/2161-0525.S2-001. doi: 10.1109/SCET.2012.6342015
    Chitpong, N., Husson, S.M., 2017. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Separ. Purif. Technol. 179, 94-103. https://doi.org/10.1016/j.seppur.2017.02.009.
    Deng, S.B., Chen, J.P., 2003. Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19(12), 5058-5064. https://doi.org/10.1021/la034061x.
    Deng, S.B., Bai, R.B., 2004. Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: Performance and mechanisms. Water Res. 38(9), 2424-2432. https://doi.org/10.1016/j.watres.2004.02.024.
    Feng, B., Shen, W.Z., Shi, L.Y., Qu, S.J., 2018. Adsorption of hexavalent chromium by polyacrylonitrile-based porous carbon from aqueous solution. Royal Society Open Science. 5(1), 171662. https://doi.org/10.1098/rsos.171662.
    Flora, G., Gupta, D., Tiwari, A., 2012. Toxicity of lead: A review with recent updates. Interdiscipl. Toxicol. 5(2), 47-58. https://doi.org/10.2478/v10102-012-0009-2.
    Garg, V.K., Gupta, R.G., Kumar, R., Gupta, R.K., 2004. Adsorption of chromium from aqueous solution on treated sawdust. Bioresour. Technol. 92(1), 79-81. https://doi.org/10.1016/j.biortech.2003.07.004.
    Hummel, M., Standl, E., Schnell, O., 2007. Chromium in metabolic and cardiovascular disease. Horm. Metab. Res. 39(10), 743-751. https://doi.org/10.1055/s-2007-985847.
    Jabur, A.R., Abbas, L.K., Moosa, S.A., 2016. Fabrication of electrospun Chitosan/Nylon 6 nanofibrous membrane toward metal ions removal and antibacterial effect. Advances in Materials Science and Engineering. 2016, 5810216. https://doi.org/10.1155/2016/5810216.
    Jin, G.Q., Tang, H.W., Gibbes, B., Li, L., Barry, D.A., 2010. Transport of nonsorbing solutes in a streambed with periodic bedforms. Adv. Water Resour., 33(11), 1402-1416. https://doi.org/10.1016/j.advwatres.2010.09.003.
    Jin, G.Q., Zhang, Z.T., Li, R.Z., Chen, C., Tang, H.W., Li, L., Barry, D.A., 2020. Transport of zinc ions in the hyporheic zone: Experiments and simulations. Adv. Water Resour., 146, 103775. https://doi.org/10.1016/j.advwatres.2020.103775.
    Kampalanonwat, P., Supaphol, P., 2010. Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl. Mater. Interfaces 2(12), 3619-3627. https://doi.org/10.1021/am1008024.
    Kongsricharoern, N., Polprasert, C., 1995. Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Sci. Technol. 31(9), 109-117. https://doi.org/10.2166/wst.1995.0350.
    Li, N., Bai, R.B., 2006. Highly enhanced adsorption of lead ions on chitosan granules functionalized with poly(acrylic acid). Ind. Eng. Chem. Res. 45(23), 7897-7904. https://doi.org/10.1021/ie060514s.
    Mahanta, D., Madras, G., Radhakrishnan, S., Patil, S., 2008. Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics. J. Phys. Chem. B 112(33), 10153-10157. https://doi.org/10.1021/jp803903x.
    Malik, H., Qureshi, U.A., Muqeet, M., Mahar, R.B., Ahmed, F., Khatri, Z., 2018. Removal of lead from aqueous solution using polyacrylonitrile/magnetite nanofibers. Environ. Sci. Pollut. Res. 25, 3557-3564. https://doi.org/10.1007/s11356-017-0706-7.
    Mamyrbaev A.A., Dzharkenov, T.A., Imangazina, Z.A., Satybaldieva, U.A., 2015. Mutagenic and carcinogenic actions of chromium and its compounds. Environ. Health Prev. Med. 20, 159-167. https://doi.org/10.1007/s12199-015-0458-2.
    Mohammad, N., and Atassi, Y., 2020. Adsorption of methylene blue onto electrospun nanofibrous membranes of polylactic acid and polyacrylonitrile coated with chloride doped polyaniline. Sci. Rep. 10, 13412. https://doi.org/10.1038/s41598-020-69825-y.
    Mwangi, I.W., Ngila, J.C., 2012. Removal of heavy metals from contaminated water using ethylenediamine-modified green seaweed (Caulerpa serrulata). Physics and Chemistry of the Earth, Parts A/B/C. 50-52, 111-120. https://doi.org/10.1016/j.pce.2012.08.015.
    Needleman, H., 2004. Lead poisoning. Annu. Rev. Med. 55 (1), 209-222. https://doi.org/10.1146/annurev.med.55.091902.103653.
    Pan, Y.L., Huang, S.C., Li, F.R., Zhao, X.Z., Wang, W.J., 2018. Coexistence of superhydrophilicity and superoleophobicity: Theory, experiments and applications in oil/water separation. J. Mater. Chem. A. 6, 15057-15063. https://doi.org/10.1039/C8TA04725A.
    Saliha, B., Patrick, F., Anthony, S., 2009. Investigating nanofiltration of multi-ionic solutions using the steric, electric and dielectric exclusion model. Chem. Eng. Sci. 64(17), 3789-3798. https://doi.org/10.1016/j.ces.2009.05.020.
    Selatile, M.K., Ray, S.S., Ojijo, V., Sadiku, R., 2019. Correlations between fibre diameter, physical parameters, and the mechanical properties of randomly oriented biobased polylactide nanofibres. Fibers Polym. 20, 100-112. https://doi.org/10.1007/s12221-019-8262-z.
    Shalaby, T.I., El-Kady, M.F., Zaki, A.E.H.M., El-Kholy, S.M., 2017. Preparation and application of magnetite nanoparticles immobilized on cellulose acetate nanofibers for lead removal from polluted water. Water Supply 17(1), 176-187. https://doi.org/10.2166/ws.2016.124.
    Thamer, B.M., Aldalbahi, A., Moydeen A, M., Al-Enizi, A.M., El-Hamshary, H., El-Newehy, M.H., 2019. Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Sci. Rep. 9, 19467. https://doi.org/10.1038/s41598-019-55679-6.
    Wong, C.S., Berrang, P., 1976. Contamination of tap water by lead pipe and solder. Bull. Environ. Contam. Toxicol. 15, 530-534. https://doi.org/10.1007/BF01685700.
    Zang, L.L., Lin, R., Dou, T.W., Wang, L., Ma, J., Sun, L.G., 2019. Electrospun superhydrophilic membranes for effective removal of Pb(II) from water. Nanoscale Adv. (1), 389-394. https://doi.org/10.1039/C8NA00044A. doi: 10.1039/c8na00044a
    Zhang, R.H., Ma, H.Z., Wang, B., 2010. Removal of chromium(VI) from aqueous solutions using polyaniline doped with sulfuric acid. Ind. Eng. Chem. Res. 49(20), 9998-10004. https://doi.org/10.1021/ie1008794.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(10)

    Article Metrics

    Article views (295) PDF downloads(146) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return