Citation: | Qiu-sheng Yuan, Pei-fang Wang, Juan Chen, Chao Wang, Sheng Liu, Xun Wang. 2021: Influence of cascade reservoirs on spatiotemporal variations of hydrogeochemistry in Jinsha River. Water Science and Engineering, 14(2): 97-108. doi: 10.1016/j.wse.2021.06.008 |
Chao, L., Yang, S.Y., Lian, E.G., Yang, C.F., Deng, K., Liu, Z.F., 2016. Damming effect on the Changjiang (Yangtze River) River water cycle based on stable hydrogen and oxygen isotopic records. J. Geochem. Explor. 165, 125-133. https://doi.org/10.1016/j.gexplo.2016.03.006.
|
Chen, J., Wang, P.F., Wang, C., Wang, X., Miao, L.Z., Liu, S., Yuan, Q.S., Sun, S.H., 2020. Distinct assembly mechanisms underlie similar biogeographic patterns of rare and abundant bacterioplankton in cascade reservoirs of a large river. Front. Microbiol. 11, 158. https://doi.org/10.3389/fmicb.2020.00158. doi: 10.1504/ijmic.2020.10032858
|
Chen, J.S., Wang, F.Y., Xia, X.H., Zhang, L.T., 2002. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 187(3-4), 231-255. https://doi.org/10.1016/S0009-2541(02)00032-3.
|
Ellis, L.E., Jones, N.E., 2013. Longitudinal trends in regulated rivers: A review and synthesis within the context of the serial discontinuity concept. Environ. Rev. 21(3), 136-148. https://doi.org/10.1139/er-2012-0064.
|
Fearnside, P.M., Pueyo, S., 2012. COMMENTARY: Greenhouse-gas emissions from tropical dams. Nat. Clim. Change 2(6), 382-384. https://doi.org/10.1038/nclimate1540.
|
Gao, Y., Wang, B.L., Liu, X.L., Wang, Y.C., Zhang, J., Jiang, Y.X., Wang, F.S., 2013. Impacts of river impoundment on the riverine water chemistry composition and their response to chemical weathering rate. Front. Earth Sci. 7(3), 351-360. https://doi.org/10.1007/s11707-013-0366-y.
|
Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science. 170(3962), 1088-1090. https://doi.org/10.1126/science.172.3985.870.
|
Huang, W., Chen, J., Wang, B., 2010. Study on averaging effect of cascade hydropower development on flow and water temperature process. Resour. Environ. Yangtze Basin 19(3), 335-339 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CJLY201003019.htm
|
Huang, X., Sillanpaa, M., Gjessing, E.T., Vogt, R.D., 2009. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers. Sci. Total Environ. 407(24), 6242-6254. https://doi.org/10.1016/j.scitotenv.2009.09.001.
|
Huang, X.R., Gao, L.Y., Yang, P.P., Xi, Y.Y., 2018. Cumulative impact of dam constructions on streamflow and sediment regime in lower reaches of the Jinsha River, China. J. Mt. Sci. 15(12), 2752-2765. https://doi.org/10.1007/s11629-018-4924-3.
|
Immerzeel, W.W., Pellicciotti, F., Bierkens, M.F.P., 2013. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 6(9), 742-745. https://doi.org/10.1038/NGEO1896. doi: 10.1038/ngeo1896
|
Jin, G.Q., Tang, H.W., Li, L., Barry, D.A., 2015. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed. Water Resour. Res. 51(4), 1898-1915. https://doi.org/10.1002/2014wr016369.
|
Jin, G.Q., Zhang, Z.T., Yang, Y.H., Hu, S.H., Tang, H.W., Barry, D.A., Li, L., 2020. Mitigation of impact of a major benzene spill into a river through flow control and in-situ activated carbon absorption. Water Res. 172, 115489. https://doi.org/10.1016/j.watres.2020.115489.
|
Kelly, V.J., 2010. Influence of reservoirs on solute transport: A regional-scale approach. Hydrol. Process. 15(7), 1227-1249. https://doi.org/10.1002/hyp.211.
|
Khadka, U.R., Ramanathan, A.L., 2013. Major ion composition and seasonal variation in the Lesser Himalayan Lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arab. J. Geosci. 6(11), 4191-4206. https://doi.org/10.1007/s12517-012-0677-4.
|
Li, D.F., Lu, X.X., Yang, X.K., Chen, L., Lin, L., 2018. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology. 322, 41-52. https://doi.org/10.1016/j.geomorph.2018.08.038. doi: 10.1117/12.2289024
|
Li, K.F., Zhu, C., Wu, L., Huang, L.Y., 2013. Problems caused by the Three Gorges Dam construction in the Yangtze River Basin: A review. Environ. Rev. 21(3), 127-135. https://doi.org/10.1139/er-2012-0051.
|
Martin, J.M., Meybeck, M., 1979. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 7(3), 173-206. https://doi.org/10.1016/0304-4203(79)90039-2.
|
Meybeck, M., 2003. Global occurrence of major elements in rivers. Treatise Geochem. 5(1), 207-223. https://doi.org/10.1016/B0-08-043751-6/05164-1.
|
Meybeck, M., Ragu, A., 2012. GEMS-GLORI world river discharge database. Laboratoire de Geologie Appliquee, Universite Pierre et Marie Curie, Paris. https://doi.org/10.1594/PANGAEA.804574.
|
Pant, R.R., Zhang, F., Rehman, F.U., Wang, G.X., Ye, M., Zeng, C., Tang, H.D., 2018. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 622, 770-782. https://doi.org/10.1016/j.scitotenv.2017.12.063.
|
Piper, A.M., 1944. A graphic procedure in the geochemical interpretation of water analysis. Eos, Trans. Am. Geophys. Union 25(6), 914-928. https://doi.org/10.1029/TR025i006p00914.
|
Qu, B., Sillanpaa, M., Zhang, Y.L., Guo, J.M., Wahed, M.S.M.A., Kang, S.C., 2015. Water chemistry of the headwaters of the Yangtze River. Environ. Earth Sci. 74(8), 6443-6458. https://doi.org/10.1007/s12665-015-4174-4.
|
Qu, B., Zhang, Y.L., Kang, S.C., Sillanpaa, M., 2017. Water chemistry of the southern Tibetan Plateau: An assessment of the Yarlung Tsangpo River Basin. Environ. Earth Sci. 76(2), 74. https://doi.org/10.1007/s12665-017-6393-3. doi: 10.3390/w9020074
|
Qu, B., Zhang, Y.L., Kang, S.C., Sillanpaa, M., 2019. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the "Water Tower of Asia". Sci. Total Environ. 649, 571-581. https://doi.org/10.1016/j.scitotenv.2018.08.316.
|
Shi, W., Chen, Q., Yi, Q., Yu, J., Ji, Y., Hu, L., Chen, Y., 2017. Carbon emission from cascade reservoirs: Spatial heterogeneity and mechanisms. Environ. Sci. Technol. 51(21), 12175-12181. https://doi.org/10.1021/acs.est.7b03590.
|
Singh, V.B., Ramanathan, A.L., Pottakkal, J.G., Kumar, M., 2014. Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. J. Asian Earth Sci. 79(2), 224-234. https://doi.org/10.1016/j.jseaes.2013.09.010.
|
Stallard, R.F., Edmond, J.M., 1987. Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs. J. Geophys. Res. Oceans 92(C8), 8293-8302. https://doi.org/10.1029/JC092iC08p08293.
|
Thomas, J., Joseph, S., Thrivikramji, K.P., Manjusree, T.M., Arunkumar, K.S., 2014. Seasonal variation in major ion chemistry of a tropical mountain river, the Southern Western Ghats, Kerala, India. Environ. Earth Sci. 71(5), 2333-2351. https://doi.org/10.1007/s12665-013-2634-2.
|
Viers, J., Dupre, B., Gaillardet, J., 2009. Chemical composition of suspended sediments in world rivers: New insights from a new database. Sci. Total Environ. 407(2), 853-868. https://doi.org/10.1016/j.scitotenv.2008.09.053.
|
Wang, X., Yang, S., Ran, X., Liu, X.M., Bataille, C.P., Ni, S., 2018. Response of the Changjiang (Yangtze River) water chemistry to the impoundment of Three Gorges Dam during 2010-2011. Chem. Geol. 487, 1-11. https://doi.org/10.1016/j.chemgeo.2018.04.006. doi: 10.1145/3225058.3225071
|
Winemiller, K.O., McIntyre, P.B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I.G., Darwall, W., Lujan, N.K., Harrison, I., et al., 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science. 351(6269), 128-129. https://doi.org/10.1126/science.aac7082.
|
World Health Organization (WHO), 2011. Guidelines for Drinking-Water Quality. Recommendations, Vision 4. https://www.who.int/publications/i/item/9789241548151. [Retrieved June 27, 2011].
|
Wu, W.H., Yang, J.D., Xu, S.J., Yin, H.W., 2008. Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang: Silicate weathering and CO2 consumption. Appl. Geochem. 23(12), 3712-3727. https://doi.org/10.1016/j.apgeochem.2008.09.005.
|
Yuan, Q.S., Wang, P.F., Wang, C., Chen, J., Wang, X., Liu, S., Feng, T., 2019. Metals and metalloids distribution, source identification, and ecological risks in riverbed sediments of the Jinsha River, China. J. Geochem. Explor. 205, 106334. https://doi.org/10.1016/j.gexplo.2019.106334.
|
Yuan, Q.S., Wang, P.F., Wang, C., Chen, J., Wang, X., Liu, S., 2021. Indicator species and co-occurrence pattern of sediment bacterial community in relation to alkaline copper mine drainage contamination. Ecol. Indicat. 120, 106884. https://doi.org/10.1016/j.ecolind.2020.106884.
|
Zhang, J., Huang, W.W., Letolle, R., Jusserand, C., 1995. Major element chemistry of the Huanghe (Yellow River), China- weathering processes and chemical fluxes. J. Hydrol. 168(1-4), 173-203. https://doi.org/10.1016/0022-1694(94)02635-O.
|
Zhang, L.L., Zhao, Z.Q., Zhang, W., Tao, Z.H., Huang, L., Yang, J.X., Wu, Q.X., Liu, C.Q., 2016. Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang drainage basins. Environ. Earth Sci. 75(6), 506. https://doi.org/10.1007/s12665-015-5115-y.
|
Zhang, Z.J., Liu, S.Q., Cheng, B.X., Fan, Y., Li, Y., 2006. Characteristics of land resources and characteristic ecological agricultural construction of dry-hot valley along Jinsha River. J. Sichuan Agric. Univ. 24(1), 77-82 (in Chinese). https://doi.org/10.1016/S1872-2032(06)60050-4.
|