| Citation: | Hao-yuan Liu, Amir M. Kaynia. 2022: Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-Msu. Water Science and Engineering, 15(1): 69-77. doi: 10.1016/j.wse.2021.12.001 |
|
API, 2014. Recommended Practice 2AWSD Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, 22nd Edition. American Petroleum Institute, Washington, D.C.
|
|
Been, K., Jefferies, M.G., 1985. A state parameter for sands. Geotechnique 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99.
|
|
Dafalias, Y.F., Popov, E.P., 1975. A model of nonlinearly hardening materials for complex loading. Acta Mech. 21(3), 173-192. https://doi.org/10.1007/BF01181053.
|
|
Dafalias, Y.F., Manzari, M.T., 2004. Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130(6), 622-634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622).
|
|
Esfeh, P.K., Kaynia, A.M., 2020. Earthquake response of monopiles and caissons for offshore wind turbines founded in liquefiable soil. Soil Dynam.Earthq. Eng. 136, 106213. https://doi.org/10.1016/j.soildyn.2020.106213.
|
|
Houlsby, G.T., Abadie, C.N., Beuckelaers, W.J.A.P., Byrne, B.W., 2017. A model for nonlinear hysteretic and ratcheting behaviour. Int. J. Solid Struct. 120, 67-80. https://doi.org/10.1016/j.ijsolstr.2017.04.031.
|
|
Jostad, H., Grimstad, G., Andersen, K., Sivasithamparam, N., 2015. A FE procedure for calculation of cyclic behaviour of offshore foundations under partly drained conditions. Frontiers in Offshore Geotechnics III 1, 153-172. https://doi.org/10.1201/b18442-9.
|
|
Jostad, H.P., Dahl, B.M., Page, A., Sivasithamparam, N., Sturm, H., 2020.Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand. Geotechnique 70(8), 682-699. https://doi.org/10.1680/jgeot.19.TI.034.
|
|
Kaynia, A.M., 2019. Seismic considerations in design of offshore win turbines.Soil Dynam. Earthq. Eng. 124, 399-407. https://doi.org/10.1016/j.soildyn.2018.04.038.
|
|
Klinkvort, R.T., 2013. Centrifuge Modelling of Drained Lateral PileeSoil Response:Application for Offshore Wind Turbine Support Structures.Ph. D. Dissertation. Technical University of Denmark, Copenhagen.
|
|
Krieg, R.D., 1975. A practical two surface plasticity theory. J. Appl. Mech. 42(3), 641-646. https://doi.org/10.1115/1.3423656.
|
|
LeBlanc, C., Houlsby, G.T., Byrne, B.W., 2010. Response of stiff piles in sand to long-term cyclic lateral loading. Geotechnique 60(2), 79-90. https://doi.org/10.1680/geot.7.00196.
|
|
Liu, H.Y., Abell, J.A., Diambra, A., Pisanò, F., 2019. Modelling the cyclic ratcheting of sands through memory-enhanced bounding surface plasticity.Geotechnique 69(9), 783-800. https://doi.org/10.1680/jgeot.17.P.307.
|
|
Liu, H.Y., Pisanò, F., 2019. Prediction of oedometer terminal densities through a memory-enhanced cyclic model for sand. Géotech. Lett. 9(2), 81-88.https://doi.org/10.1680/jgele.18.00187.
|
|
Liu, H.Y., Diambra, A., Abell, J.A., Pisanò, F., 2020. Memory-enhanced plasticity modeling of sand behavior under undrained cyclic loading.Journal of Geotechnical and Geoenvironmental Engineering 146(11), 04020122. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002362.
|
|
Liu, H.Y., Kaynia, A.M., 2021. Cyclic undrained behaviour of SANISANDMS and its effects on response of monopiles for offshore wind structures.Geotechnique. https://doi.org/10.1680/jgeot.21.00068.
|
|
Liu, H.Y., Kementzetzidis, E., Abell, J.A., Pisanò, F., 2021. From cyclic sand ratcheting to tilt accumulation of offshore monopiles:3D FE modelling using SANISAND-MS. Geotechnique. https://doi.org/10.1680/jgeot.20.P. 029.
|
|
Mróz, Z., 1967. On the description of anisotropic work hardening. J. Mech.Phys. Solid. 15(3), 163-175. https://doi.org/10.1016/0022-5096(67) 90030-0.
|
|
Niemunis, A., Wichtmann, T., Triantafyllidis, T., 2005. A high-cycle accumulation model for sand. Comput. Geotech. 32(4), 245-263. https://doi.org/10.1016/j.compgeo.2005.03.002.
|
|
Page, A.M., Grimstad, G., Eiksund, G.R., Jostad, H.P., 2019. A macro-element model for multidirectional cyclic lateral loading of monopiles in clay. Comput. Geotech. 106, 314-326. https://doi.org/10.1016/j.compgeo.2018.11.007.
|
|
Richards, I.A., Byrne, B.W., Houlsby, G.T., 2020. Monopile rotation under complex cyclic lateral loading in sand. Geotechnique 70(10), 916-930.https://doi.org/10.1680/jgeot.18.P.302.
|
|
Schanz, T., Vermeer, P.A., Bonnier, P.G., 1999. The hardening soil model:Formulation and verification. In:Brinkgeve, R.B.J. (Ed.), Beyond 2000 in Computational Geotechnics-10 Years of PLAXIS. Balkema, Rotterdam, pp. 281-296.
|
|
Staubach, P., Wichtmann, T., 2020. Long-term deformations of monopile foundations for offshore wind turbines studied with a high-cycle accumulation model. Comput. Geotech. 124, 103553. https://doi.org/10.1016/j.compgeo.2020.103553.
|
|
Tasiopoulou, P., Chaloulos, Y., Gerolymos, N., Giannakou, A., Chacko, J., 2021. Cyclic lateral response of OWT bucket foundations in sand:3D coupled effective stress analysis with Ta-Ger model. Soils Found. 61(2), 371-385. https://doi.org/10.1016/j.sandf.2020.12.002.
|
|
Truong, P., Lehane, B.M., Zania, V., Klinkvort, R.T., 2019. Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand. Geotechnique 69(2), 133-145. https://doi.org/10.1680/jgeot.17.P.203.
|
|
Wichtmann, T., Triantafyllidis, T., 2016. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading:Part I-tests with monotonic loading and stress cycles. Acta Geotechnica 11(4), 739-761. https://doi.org/10.1007/s11440-015-0402-z.
|