Volume 15 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Dong-fang Liang, Hao Jia, Yang Xiao, Sai-yu Yuan. 2022: Experimental investigation of turbulent flows around high-rise structure foundations and implications on scour. Water Science and Engineering, 15(1): 47-56. doi: 10.1016/j.wse.2021.12.002
Citation: Dong-fang Liang, Hao Jia, Yang Xiao, Sai-yu Yuan. 2022: Experimental investigation of turbulent flows around high-rise structure foundations and implications on scour. Water Science and Engineering, 15(1): 47-56. doi: 10.1016/j.wse.2021.12.002

Experimental investigation of turbulent flows around high-rise structure foundations and implications on scour

doi: 10.1016/j.wse.2021.12.002
Funds:

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFC0402605), the National Natural Science Foundation of China (Grant No. 51779080), the Fok Ying Tung Education Foundation (Grant No. 20190094210001), the Natural Science Foundation of Jiangsu Province (Grant No. BK20191299), and the 111 Project of the Ministry of Education and State Administration of Foreign Expert Affairs of China (Grant No. B17015).

  • Received Date: 2021-06-10
  • Accepted Date: 2021-09-10
  • Available Online: 2022-03-07
  • Many studies have been undertaken to predict local scour around offshore high-rise structure foundations (HRSFs), which have been used in constructing the Donghai Wind Farm in China. However, there have been few works on the turbulent flow that drives the scour process. In this study, the characteristics of the turbulent flow fields around an HRSF were investigated using the particle image velocimetry technique. The mean flow, vorticity, and turbulence intensity were analyzed in detail. The relationship between the flow feature and scour development around an HRSF was elaborated. The results showed that the flow velocity increased to its maximum value near the third row of the pile group. The shear layer and wake vortices could not be fully developed downstream of the last row of the piles at small Reynolds numbers. The strong flow and turbulent fluctuation near the third piles explained the existence of a long-tail scour pattern starting from the HRSF shoulders and a trapezoidal deposition region directly downstream of HRSF. This laboratory experiment gains insight into the mechanism of the turbulent flow around HRSFs and provides a rare dataset for numerical model verifications.

     

  • loading
  • Astarita, T., 2006. Analysis of interpolation schemes for image deformation methods in PIV:Effect of noise on the accuracy and spatial resolution.Exp. Fluid 40(6), 977-987. https://doi.org/10.1007/s00348-006-0139-4.
    Balasubramanian, S., Zhong, Q., 2018. Entrainment and mixing in lockexchange gravity currents using simultaneous velocity-density measurements. Phys. Fluids 30(5), 056601. https://doi.org/10.1063/1.5023033.
    Beheshti, A.A., Ataie-Ashtiani, B., 2010. Experimental study of threedimensional flow field around a complex bridge pier. J. Eng. Mech. 136(2), 143-154. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000073.
    Chang, K., Jeng, D., Zhang, J., Zhang, Y., 2014. Soil response around Donghai offshore wind turbine foundation, China. Proc. Inst. Civ. Eng.-Energy 167, 20-31. https://doi.org/10.1680/ener.12.00017.
    Chen, Q., Chen, K., Zhong, Q., Li, D., Wang, X., 2017a. Principle and Practice of High Frequency Particle Image Velocimetry System. Tsinghua University Press, Beijing (in Chinese).
    Chen, Q., Qi, M., Zhong, Q., Li, D., 2017b. Experimental study on the multimodal dynamics of the turbulent horseshoe vortex system around a circular cylinder. Phys. Fluids 29, 015106. https://doi.org/10.1063/1.4974523.
    Cheng, N.S., Chiew, Y.M., Chen, X., 2016. Scaling analysis of pier-scouring processes. J. Eng. Mech. 142, 6016005. https://doi.org/10.1061/(asce)em.1943-7889.0001107.
    Diab, R., Link, O., Zanke, U., 2010. Geometry of developing and equilibrium scour holes at bridge piers in gravel. Can. J. Civ. Eng. 37, 544-552.https://doi.org/10.1139/l09-176.
    Ettema, R., Kirkil, G., Muste, M., 2006. Similitude of large-scale turbulence in experiments on local scour at cylinders. J. Hydraul. Eng. 132, 33-40.https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(33).
    Follett, E.M., Nepf, H.M., 2012. Sediment patterns near a model patch of reedy emergent vegetation. Geomorphology 179, 141-151. https://doi.org/10.1016/j.geomorph.2012.08.006.
    Gautam, P., Eldho, T.I., Mazumder, B.S., Behera, M.R., 2018. Experimental study of flow and turbulence characteristics around simple and complex piers using PIV. Exp. Therm. Fluid Sci. 100, 193-206. https://doi.org/10.1016/j.expthermonopilelusci.2018.09.010.
    Guan, D., Chiew, Y.M., Melville, B.W., Zheng, J., 2019a. Current-induced scour at monopile foundations subjected to lateral vibrations. Coast. Eng. 144, 15-21. https://doi.org/10.1016/j.coastaleng.2018.10.011.
    Guan, D., Chiew, Y., Wei, M., Hsieh, S., 2019b. Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Int. J.Sediment Res. 34(2), 118-124. https://doi.org/10.1016/j.ijsrc.2018.07.001.
    Hsieh, S.C., Low, Y.M., Chiew, Y.M., 2016. Flow characteristics around a circular cylinder subjected to vortex-induced vibration near a plane boundary. J. Fluid Struct. 65, 257-277. https://doi.org/10.1016/j.jfluidstructs.2016.06.007.
    Julian, M., Christian, J.K., Christian, C., 2018. A volumetric temperature and velocity measurement technique for microfluidics based on luminescence lifetime imaging. Exp. Fluid 59(11), 163. https://doi.org/10.1007/s00348-018-2616-y.
    Keshavarzi, A., Melville, B., Ball, J., 2014. Three-dimensional analysis of coherent turbulent flow structure around a single circular bridge pier.Environ. Fluid Mech. 14, 821-847. https://doi.org/10.1007/s10652-013-9332-1.
    Kirkil, G., Constantinescu, G., 2010. Flow and turbulence structure around an in-stream rectangular cylinder with scour hole. Water Resour. Res. 46, 1-20. https://doi.org/10.1029/2010WR009336.
    Kitsikoudis, V., Yagci, O., Kirca, V.O., Kellecioglu, D., 2016. Experimental investigation of channel flow through idealized isolated tree-like vegetation. Environ. Fluid Mech. 16(6), 1283-1308. https://doi.org/10.1007/s10652-016-9487-7.
    Kitsikoudis, V., Kirca, V.S.O., Yagci, O., Celik, M.F., 2017. Clear-water scour and flow field alteration around an inclined pile. Coast. Eng. 129, 59-73.https://doi.org/10.1016/j.coastaleng.2017.09.001.
    Kumar, A., Kothyari, U.C., 2012. Three-dimensional flow characteristics within the scour hole around circular uniform and compound piers. J. Hydraul.Eng. 138, 420-429. https://doi.org/10.1061/(ASCE)HY.1943-7900.
    Kuo, Y.S., Achmus, M., Abdel-Rahman, K., 2011. Minimum embedded length of cyclic horizontally loaded monopiles. J. Geotech. Geoenviron. Eng. 138, 357-363. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000602.
    Liang, D., Jiang, C., Li, Y., 2002. A combination correlation-based interrogation and tracking algorithm for digital PIV evaluation. Exp. Fluid 33, 684-695. https://doi.org/10.1007/s00348-002-0527-3.
    Liang, D., Jiang, C., Li, Y., 2003. Cellular neural network to detect spurious vectors in PIV data. Exp. Fluid 34, 52-62. https://doi.org/10.1007/s00348-002-0530-8.
    Liu, J., Zhang, P., Xiao, Y., Wang, Z., Yuan, S., Tang, H., 2021. Interaction between dual spherical particles during settling in fluid. Phys. Fluids 33(1), 013312. https://doi.org/10.1063/5.0034927.
    Melville, B.W., Raudkivi, A.J., 1977. Flow characteristics in local scour at bridge piers. J. Hydraul. Res. 15(4), 373-380. https://doi.org/10.1080/00221687709499641.
    Melville, B.W., Chiew, Y.M., 1999. Time scale for local scour at bridge piers.J. Hydraul. Eng. 125, 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59).
    Nogueira, J., Lecuona, A., Rodríguez, P.A., 2001. Local field correction PIV, implemented by means of simple algorithms, and multigrid versions.Meas. Sci. Technol. 12(11), 191. https://doi.org/10.1088/0957-0233/12/11/321.
    Parthasarathy, R.N., Muste, M., 1994. Velocity measurements in asymmetric turbulent channel flows. J. Hydraul. Eng. 120(9), 1000-1020. https://doi.org/10.1061/(asce)0733-9429(1994)120:9(1000).
    Qi, W.G., Li, Y.X., Xu, K., Gao, F.P., 2019. Physical modelling of local scour at twin piles under combined waves and current. Coast. Eng. 143, 63-75.https://doi.org/10.1016/j.coastaleng.2018.10.009.
    Scarano, F., Riethmuller, M.L., 1999. Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluid 26(6), 513-523.https://doi.org/10.1007/s003480050318.
    Stahlmann, A., 2014. Numerical and experimental modeling of scour at foundation structures for offshore wind turbines. J. Ocean Wind Energy 1(2), 82-89.
    Sumer, B., 1986. Recent developments on the mechanics of sediment suspension. In:Bechteler, W. (Ed.), Transport of Suspended Solids in Open Channels, Euromech, 192. A.A. Balkema, the Netherlands, pp. 3-13.
    Sumer, B.M., 2014. Flow-structure-seabed interactions in coastal and marine environments. J. Hydraul. Res. 52, 1-13. https://doi.org/10.1080/00221686.2014.881927.
    Tang, H.W., Ding, B., Chiew, Y.M., Fang, S.L., 2009. Protection of bridge piers against scouring with tetrahedral frames. Int. J. Sediment Res. 24, 385-399. https://doi.org/10.1016/S1001-6279(10)60012-1.
    Unger, J., Hager, W.H., 2006. Downflow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp. Fluid 42, 1-19. https://doi.org/10.1007/s00348-006-0209-7.
    Wang, H., Tang, H., Liu, Q., Wang, Y., 2016. Local scouring around twin bridge piers in open-channel flows. J. Hydraul. Eng. 142, 6016008. https://doi.org/10.1061/(asce)hy.1943-7900.0001154.
    Wei, M., Chiew, Y.M., 2018. Characteristics of propeller jet flow within developing scour holes around an open quay. J. Hydraul. Eng. 144. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001470.
    Whitehouse, R.J.S., Harris, J.M., Sutherland, J., Rees, J., 2011. The nature of scour development and scour protection at offshore windfarm foundations. Mar. Pollut. Bull. 62, 73-88. https://doi.org/10.1016/j.marpolbul.2010.09.007.
    Xiao, Y., Jia, H., Guan, D., Liang, D., Yuan, S., Tang, H., 2021a. Experimental investigation on scour topography around high-rise structure foundations.Int. J. Sediment Res. 36, 348-361. https://doi.org/10.1016/j.ijsrc.2020.10.009.
    Xiao, Y., Jia, H., Guan, D., Liang, D., Yuan, S., Tang, H., 2021b. Modeling clear-water scour around the high-rise structure foundations (HRSF) of offshore wind farms. J. Coast Res. 37(4), 749-760. https://doi.org/10.2112/JCOASTRES-D-20-00090.1.
    Yu, T., Lian, J., Shi, Z., Wang, H., 2016. Experimental investigation of currentinduced local scour around composite bucket foundation in silty sand. Ocean Eng. 117, 311-320. https://doi.org/10.1016/j.oceaneng.2016.03.045.
    Yuan, C., Melville, B.W., Adams, K.N., 2017. Scour at wind turbine tripod foundation under steady flow. Ocean Eng. 141, 277-282. https://doi.org/10.1016/j.oceaneng.2017.06.038.
    Zhao, M., Cheng, L., Zang, Z., 2010. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents.Coast. Eng. 57, 709-721. https://doi.org/10.1016/j.coastaleng.2010.03.002.
    Zhong, Q., Hussain, F., Fernando, H.J., 2018. Quantification of turbulent mixing in colliding gravity currents. J. Fluid Mech. 851, 125-147. https://doi.org/10.1017/jfm.2018.488.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (480) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return