| Citation: | Dong-fang Liang, Hao Jia, Yang Xiao, Sai-yu Yuan. 2022: Experimental investigation of turbulent flows around high-rise structure foundations and implications on scour. Water Science and Engineering, 15(1): 47-56. doi: 10.1016/j.wse.2021.12.002 |
|
Astarita, T., 2006. Analysis of interpolation schemes for image deformation methods in PIV:Effect of noise on the accuracy and spatial resolution.Exp. Fluid 40(6), 977-987. https://doi.org/10.1007/s00348-006-0139-4.
|
|
Balasubramanian, S., Zhong, Q., 2018. Entrainment and mixing in lockexchange gravity currents using simultaneous velocity-density measurements. Phys. Fluids 30(5), 056601. https://doi.org/10.1063/1.5023033.
|
|
Beheshti, A.A., Ataie-Ashtiani, B., 2010. Experimental study of threedimensional flow field around a complex bridge pier. J. Eng. Mech. 136(2), 143-154. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000073.
|
|
Chang, K., Jeng, D., Zhang, J., Zhang, Y., 2014. Soil response around Donghai offshore wind turbine foundation, China. Proc. Inst. Civ. Eng.-Energy 167, 20-31. https://doi.org/10.1680/ener.12.00017.
|
|
Chen, Q., Chen, K., Zhong, Q., Li, D., Wang, X., 2017a. Principle and Practice of High Frequency Particle Image Velocimetry System. Tsinghua University Press, Beijing (in Chinese).
|
|
Chen, Q., Qi, M., Zhong, Q., Li, D., 2017b. Experimental study on the multimodal dynamics of the turbulent horseshoe vortex system around a circular cylinder. Phys. Fluids 29, 015106. https://doi.org/10.1063/1.4974523.
|
|
Cheng, N.S., Chiew, Y.M., Chen, X., 2016. Scaling analysis of pier-scouring processes. J. Eng. Mech. 142, 6016005. https://doi.org/10.1061/(asce)em.1943-7889.0001107.
|
|
Diab, R., Link, O., Zanke, U., 2010. Geometry of developing and equilibrium scour holes at bridge piers in gravel. Can. J. Civ. Eng. 37, 544-552.https://doi.org/10.1139/l09-176.
|
|
Ettema, R., Kirkil, G., Muste, M., 2006. Similitude of large-scale turbulence in experiments on local scour at cylinders. J. Hydraul. Eng. 132, 33-40.https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(33).
|
|
Follett, E.M., Nepf, H.M., 2012. Sediment patterns near a model patch of reedy emergent vegetation. Geomorphology 179, 141-151. https://doi.org/10.1016/j.geomorph.2012.08.006.
|
|
Gautam, P., Eldho, T.I., Mazumder, B.S., Behera, M.R., 2018. Experimental study of flow and turbulence characteristics around simple and complex piers using PIV. Exp. Therm. Fluid Sci. 100, 193-206. https://doi.org/10.1016/j.expthermonopilelusci.2018.09.010.
|
|
Guan, D., Chiew, Y.M., Melville, B.W., Zheng, J., 2019a. Current-induced scour at monopile foundations subjected to lateral vibrations. Coast. Eng. 144, 15-21. https://doi.org/10.1016/j.coastaleng.2018.10.011.
|
|
Guan, D., Chiew, Y., Wei, M., Hsieh, S., 2019b. Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Int. J.Sediment Res. 34(2), 118-124. https://doi.org/10.1016/j.ijsrc.2018.07.001.
|
|
Hsieh, S.C., Low, Y.M., Chiew, Y.M., 2016. Flow characteristics around a circular cylinder subjected to vortex-induced vibration near a plane boundary. J. Fluid Struct. 65, 257-277. https://doi.org/10.1016/j.jfluidstructs.2016.06.007.
|
|
Julian, M., Christian, J.K., Christian, C., 2018. A volumetric temperature and velocity measurement technique for microfluidics based on luminescence lifetime imaging. Exp. Fluid 59(11), 163. https://doi.org/10.1007/s00348-018-2616-y.
|
|
Keshavarzi, A., Melville, B., Ball, J., 2014. Three-dimensional analysis of coherent turbulent flow structure around a single circular bridge pier.Environ. Fluid Mech. 14, 821-847. https://doi.org/10.1007/s10652-013-9332-1.
|
|
Kirkil, G., Constantinescu, G., 2010. Flow and turbulence structure around an in-stream rectangular cylinder with scour hole. Water Resour. Res. 46, 1-20. https://doi.org/10.1029/2010WR009336.
|
|
Kitsikoudis, V., Yagci, O., Kirca, V.O., Kellecioglu, D., 2016. Experimental investigation of channel flow through idealized isolated tree-like vegetation. Environ. Fluid Mech. 16(6), 1283-1308. https://doi.org/10.1007/s10652-016-9487-7.
|
|
Kitsikoudis, V., Kirca, V.S.O., Yagci, O., Celik, M.F., 2017. Clear-water scour and flow field alteration around an inclined pile. Coast. Eng. 129, 59-73.https://doi.org/10.1016/j.coastaleng.2017.09.001.
|
|
Kumar, A., Kothyari, U.C., 2012. Three-dimensional flow characteristics within the scour hole around circular uniform and compound piers. J. Hydraul.Eng. 138, 420-429. https://doi.org/10.1061/(ASCE)HY.1943-7900.
|
|
Kuo, Y.S., Achmus, M., Abdel-Rahman, K., 2011. Minimum embedded length of cyclic horizontally loaded monopiles. J. Geotech. Geoenviron. Eng. 138, 357-363. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000602.
|
|
Liang, D., Jiang, C., Li, Y., 2002. A combination correlation-based interrogation and tracking algorithm for digital PIV evaluation. Exp. Fluid 33, 684-695. https://doi.org/10.1007/s00348-002-0527-3.
|
|
Liang, D., Jiang, C., Li, Y., 2003. Cellular neural network to detect spurious vectors in PIV data. Exp. Fluid 34, 52-62. https://doi.org/10.1007/s00348-002-0530-8.
|
|
Liu, J., Zhang, P., Xiao, Y., Wang, Z., Yuan, S., Tang, H., 2021. Interaction between dual spherical particles during settling in fluid. Phys. Fluids 33(1), 013312. https://doi.org/10.1063/5.0034927.
|
|
Melville, B.W., Raudkivi, A.J., 1977. Flow characteristics in local scour at bridge piers. J. Hydraul. Res. 15(4), 373-380. https://doi.org/10.1080/00221687709499641.
|
|
Melville, B.W., Chiew, Y.M., 1999. Time scale for local scour at bridge piers.J. Hydraul. Eng. 125, 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59).
|
|
Nogueira, J., Lecuona, A., Rodríguez, P.A., 2001. Local field correction PIV, implemented by means of simple algorithms, and multigrid versions.Meas. Sci. Technol. 12(11), 191. https://doi.org/10.1088/0957-0233/12/11/321.
|
|
Parthasarathy, R.N., Muste, M., 1994. Velocity measurements in asymmetric turbulent channel flows. J. Hydraul. Eng. 120(9), 1000-1020. https://doi.org/10.1061/(asce)0733-9429(1994)120:9(1000).
|
|
Qi, W.G., Li, Y.X., Xu, K., Gao, F.P., 2019. Physical modelling of local scour at twin piles under combined waves and current. Coast. Eng. 143, 63-75.https://doi.org/10.1016/j.coastaleng.2018.10.009.
|
|
Scarano, F., Riethmuller, M.L., 1999. Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluid 26(6), 513-523.https://doi.org/10.1007/s003480050318.
|
|
Stahlmann, A., 2014. Numerical and experimental modeling of scour at foundation structures for offshore wind turbines. J. Ocean Wind Energy 1(2), 82-89.
|
|
Sumer, B., 1986. Recent developments on the mechanics of sediment suspension. In:Bechteler, W. (Ed.), Transport of Suspended Solids in Open Channels, Euromech, 192. A.A. Balkema, the Netherlands, pp. 3-13.
|
|
Sumer, B.M., 2014. Flow-structure-seabed interactions in coastal and marine environments. J. Hydraul. Res. 52, 1-13. https://doi.org/10.1080/00221686.2014.881927.
|
|
Tang, H.W., Ding, B., Chiew, Y.M., Fang, S.L., 2009. Protection of bridge piers against scouring with tetrahedral frames. Int. J. Sediment Res. 24, 385-399. https://doi.org/10.1016/S1001-6279(10)60012-1.
|
|
Unger, J., Hager, W.H., 2006. Downflow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp. Fluid 42, 1-19. https://doi.org/10.1007/s00348-006-0209-7.
|
|
Wang, H., Tang, H., Liu, Q., Wang, Y., 2016. Local scouring around twin bridge piers in open-channel flows. J. Hydraul. Eng. 142, 6016008. https://doi.org/10.1061/(asce)hy.1943-7900.0001154.
|
|
Wei, M., Chiew, Y.M., 2018. Characteristics of propeller jet flow within developing scour holes around an open quay. J. Hydraul. Eng. 144. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001470.
|
|
Whitehouse, R.J.S., Harris, J.M., Sutherland, J., Rees, J., 2011. The nature of scour development and scour protection at offshore windfarm foundations. Mar. Pollut. Bull. 62, 73-88. https://doi.org/10.1016/j.marpolbul.2010.09.007.
|
|
Xiao, Y., Jia, H., Guan, D., Liang, D., Yuan, S., Tang, H., 2021a. Experimental investigation on scour topography around high-rise structure foundations.Int. J. Sediment Res. 36, 348-361. https://doi.org/10.1016/j.ijsrc.2020.10.009.
|
|
Xiao, Y., Jia, H., Guan, D., Liang, D., Yuan, S., Tang, H., 2021b. Modeling clear-water scour around the high-rise structure foundations (HRSF) of offshore wind farms. J. Coast Res. 37(4), 749-760. https://doi.org/10.2112/JCOASTRES-D-20-00090.1.
|
|
Yu, T., Lian, J., Shi, Z., Wang, H., 2016. Experimental investigation of currentinduced local scour around composite bucket foundation in silty sand. Ocean Eng. 117, 311-320. https://doi.org/10.1016/j.oceaneng.2016.03.045.
|
|
Yuan, C., Melville, B.W., Adams, K.N., 2017. Scour at wind turbine tripod foundation under steady flow. Ocean Eng. 141, 277-282. https://doi.org/10.1016/j.oceaneng.2017.06.038.
|
|
Zhao, M., Cheng, L., Zang, Z., 2010. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents.Coast. Eng. 57, 709-721. https://doi.org/10.1016/j.coastaleng.2010.03.002.
|
|
Zhong, Q., Hussain, F., Fernando, H.J., 2018. Quantification of turbulent mixing in colliding gravity currents. J. Fluid Mech. 851, 125-147. https://doi.org/10.1017/jfm.2018.488.
|