Citation: | Anya Zhang. 2022: Delineation of spring capture zones in southern Great Basin, USA based on modeling results and geochemical data. Water Science and Engineering, 15(3): 189-199. doi: 10.1016/j.wse.2021.12.009 |
[1] |
Anderson, K., 2002. Contribution of Local Recharge to High-flux Springs in Death Valley National Park, California-Nevada. M. S. Dissertation. Brigham Young University, Provo
|
[2] |
Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: The contribution of local recharge to high-discharge springs, Death Valley, CA. J. Hydrol. 323, 276-302. https://doi.org/10.1016/j.jhydrol.2005.09.004
|
[3] |
Belcher, W.R., Bedinger, M.S., Back, J.T., Donald, S., Sweetkind, D.S., 2009. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S. J. Hydro. 369(1-2), 30-43. https://doi.org/10.1016/j.jhydrol.2009.02.048
|
[4] |
Bowen, G.B., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research 39(10), 1299. https://doi.org/10.1029/2003WR002086
|
[5] |
Brooks, L.E., Masbruch, M.D., Sweetkind, D.S., Buto, S.G., 2014. Steady-State Numerical Groundwater Flow Model of the Great Basin Carbonate and Alluvial Aquifer System, U.S. Geological Survey Scientific Investigations Report 2014-5213. Utah Water Science Center, U.S. Geological Survey, Salt Lake City. https://doi.org/10.3133/sir20145213
|
[6] |
Bushman, M., Nelson, S.T., Tingey, D., Eggett, D., 2010. Regional groundwater flow in structurally-complex extended terranes: An evaluation of the sources of discharge at Ash Meadows, Nevada. J. Hydrol. 386, 118-129. https://doi.org/10.1016/j.jhydrol.2010.03.013
|
[7] |
Claassen, H.C., 1983. Sources and Mechanisms of Recharge for Ground Water in the West-Central Amargosa Desert, Nevada: A Geochemical Interpretation, USGS Open-file Report 83-542. U.S. Geological Survey, Denver. https://doi.org/10.3133/ofr83542
|
[8] |
Claassen, H.C., 1985. Sources and Mechanisms of Recharge for Ground Water in the West-Central Amargosa Desert, Nevada: A Geochemical Interpretation, Professional Paper 712-F. U.S. Geological Survey, Denver, Colorado. https://doi.org/10.3133/pp712F
|
[9] |
Eakin, T.E., 1966. A regional interbasin groundwater flow system in the White River area, southeastern Nevada. Water Resour. Res. 2(2), 251-271. https://doi.org/10.1029/WR002i002p00251
|
[10] |
Faunt, C.C., Blainey, J.B., Hill, M.C., D’Agnese, F.A., O'Brien, G.M., 2004. Chapter F: Transient numerical model. In: Belcher, W.R., eds., Death Valley Regional Ground-Water Flow System, Nevada and California-Hydrologic Framework and Transient Ground-Water Flow Model, U.S. Geological Survey Scientific Investigations Report 2004-5205. U.S. Geological Survey, pp. 257−352. https://pubs.usgs.gov/sir/2004/5205/
|
[11] |
Fontes, J.C., Garnier, J.M., 1979. Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach. Water Resour. Res. 15(2), 399-413. https://doi.org/10.1029/WR015i002p00399
|
[12] |
Hagedorn, B., 2015. Hydrochemical and 14C constraints on groundwater recharge and interbasin flow in an arid watershed: Tule Desert, Nevada. J. Hydrol. 523, 297-308. https://doi.org/10.1016/j.jhydrol.2015.01.037
|
[13] |
Halford, K.J., Jackson, T.R., 2020. Groundwater Characterization and Effects of Pumping in the Death Valley Regional Groundwater Flow System, Nevada and California, with Special Reference to Devils Hole, U.S. Geological Survey Professional Paper 1863. Nevada Water Science Center, U.S. Geological Survey, Carson City. https://doi.org/10.3133/pp1863
|
[14] |
Heilweil, V.M., Brooks, L.E., 2011. Conceptual Model of the Great Basin Carbonate and Alluvial Aquifer System, U.S. Geological Survey Scientific Investigations Report 2010-5193. Utah Water Science Center, U.S. Geological Survey, Salt Lake City. https://doi.org/10.3133/sir20105193
|
[15] |
Howard, J., Merrifield, M., 2015. Mapping groundwater dependent ecosystems in California. PLoS ONE 5(6), e11249. https://doi.org/10.1371/journal.pone.0011249
|
[16] |
Hunt, R.J., Steuer, J.J., Mansor, M.T.C., Bullen, T.D., 2001. Delineating a recharge area for a spring using numerical modeling, Monte Carlo techniques, and geochemical Investigation. Groundwater 39(5), 702-712. https://doi.org/10.1111/j.1745-6584.2001.tb02360.x
|
[17] |
Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., Kreamer, D.K., Zhou, X., 1997. Delineation of ground-water flow systems in the southern Great Basin using aqueous rare earth element distributions. Groundwater 35(5), 807-819. https://doi.org/10.1111/j.1745-6584.1997.tb00149.x
|
[18] |
Johannesson, K.H., Farnham, I.M., Guo, C., Stetzenbach, K.J., 1999. Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basin-fill aquifer, southern Nevada, USA. Geochim. Cosmochim. Acta 63, 2697-2708. https://doi.org/10.1016/S0016-7037(99)00184-2
|
[19] |
Johannesson, K.H., Zhou, X., Guo, C., Stetzenbach, K.J., Hodge, V.F., 2000. Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chemical Geology 164(3-4), 239-257. https://doi.org/10.1016/S0009-2541(99)00152-7
|
[20] |
Kloeve, B., Pertti, A., Bertrand, G., Gurdak, J.J., Kupfersberger, H., Kvaerner, J., Muotka, T., Mykra, H., Preda, E., Rossi, P., et al., 2014. Climate change impact on groundwater and dependent ecosystems. J. Hydrol. 518, 250-266. https://doi.org/10.1016/j.jhydrol.2013.06.037
|
[21] |
Laczniak, R.J., Smith, J.L., Elliott, P.E., DeMeo, G.A., Chatigny, M.A., Roemer, G.J., 2001. Ground-Water Discharge Determined from Estimates of Evapotranspiration, Death Valley Regional Flow System, Nevada and California, U.S. Geological Survey Water-Resources Investigations Report 01-4195. Nevada Water Science Center, U.S. Geological Survey, Carson City. https://pubs.usgs.gov/wri/wri014195/book/wri014195.pdf
|
[22] |
Marshall, B.D., Moscati, R.J., Patterson, G.L., 2012. Fluid geochemistry of Yucca Mountain and vicinity. In: Stuckless, J.S., eds., Hydrology and Geochemistry of Yucca Mountain and Vicinity, Southern Nevada and California. Geological Society of America, pp. 143-218. https://doi.org/10.1130/2012.1209(04)
|
[23] |
Matiaki, M., Siarkos, I., Katsifarakis, K., 2016. Numerical modeling of groundwater flow to delineate spring protection zones: The case of Krokos aquifer, Greece. Desalination and Water Treatment 57, 11572-11581. https://doi.org/10.1080/19443994.2015.1049968
|
[24] |
Patten, D.T., Rouse, L., Stromberg, J.C., 2008. Isolated spring wetlands in the Great Basin and Mojave deserts, USA: Potential response of vegetation to groundwater withdrawal. Environ. Manage. 41, 398-413. https://doi.org/10.1007/s00267-007-9035-9
|
[25] |
Pearson, F.J., Friedman, Jr.I., 1970. Sources of dissolved carbonate in an aquifer free of carbonate minerals. Water Resources Research 6(6), 1775-1781. https://doi.org/10.1029/WR006i006p01775
|
[26] |
Pollock, D.W., 2012. User Guide for MODPATH Version 6: A Particle-Tracking Model for MODFLOW. U.S. Geological Survey, Reston. https://doi.org/10.3133/tm6A41
|
[27] |
Prudic, D.E., Harrill, J.R., Burbey, T.J., 1995. Conceptual Evaluation of Regional Ground-Water Flow in the Carbonate-Rock Province of the Great Basin, Nevada, Utah, and Adjacent States: U.S. Geological Survey Professional Paper 1409-D. U.S. Geological Survey, Denver. http://pubs.usgs.gov/pp/1409d/report.pdf
|
[28] |
Rudnick, R.L., Gao, S., 2014. 4.1 - Composition of the continental crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry (Second Edition). Elsevier, Amsterdam, pp. 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
|
[29] |
Smedley, P. L., 1991. The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England. Geochim. Cosmochim. Acta 55, 2767-2779. https://doi.org/10.1016/0016-7037(91)90443-9
|
[30] |
Stetzenbach, K.J., Hodge, V.F., Guo, C., Farnham, I.M., Johannesson, K.H., 2001. Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Nevada, USA. J. Hydrol. 243(3-4), 254-271. https://doi.org/10.1016/S0022-1694(00)00418-2
|
[31] |
Thomas, J.I., Welch, A.H., Dettinger, M.D., 1996. Geochemistry and Isotope Hydrology of Representative Aquifers in the Great Basin Region of Nevada, Utah, and Adjacent States, U.S. Geological Survey Professional Paper 1409-C. U.S. Geological Survey, Denver. https://doi.org/10.3133/pp1409C
|
[32] |
Thomas, J.M., Benedict, F.C., Rose, T.P., Hershey, R.L., Paces, J.B., Peterman, Z.E., Farnham, I.M., Johannesson, K.H., Singh, A.K., Stetzenbach, K.J., et. al., 2003. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada, U.S. Department of Energy, Nevada Operations Office Publication 45190. U.S. Department of Energy, Oak Ridge. https://doi.org/10.2172/806667
|
[33] |
Thomas, J.M., Mihevc, T., 2011. Evaluation of Groundwater Origins, Flow Paths, and Ages in East Central and Southeastern Nevada, Desert Research Institute Letter Report, Publication 41253. Desert Research Institute, Reno
|
[34] |
Warixa, S.R., Rademachera, L.K., Meyersb, Z.P., Frisbeeb, M.D., 2020. Groundwater geochemistry and flow in the Spring Mountains, NV: Implications for the Death Valley regional flow system. J. Hydrol. 580, 1-14. https://doi.org/10.1016/j.jhydrol.2019.124313
|
[35] |
Welsh, L.W., Endter-Wada, J., 2017. Piping water from rural counties to fuel growth in Las Vegas, Nevada: Water transfer risks in the arid USA west. Water Alternatives 10(2), 420-436
|
[36] |
Winograd, I.J., Thordarson, W., 1975. Hydrogeologic and Hydrochemical Framework, South-Central Great Basin, Nevada-California, with Special Reference to the Nevada Test Site, U.S. Geological Survey Professional Paper 712-C. U.S. Geological Survey. https://doi.org/10.3133/pp712C
|
[37] |
Winograd, I.J., Pearson, F.J., 1976. Major carbon-14 anomaly in a regional carbonate aquifer: Possible evidence for megascale channeling, south central Great Basin. Water Resour. Res. 12(6), 1125-1143. https://doi.org/10.1029/WR012i006p01125
|
[38] |
Winograd, I.J., Riggs, A.C., Coplen, T.B., 1998. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA. Hydrogeol. J. 6, 77-93. https://doi.org/10.1007/s100400050135
|
[39] |
Winston, R.B., 2019. ModelMuse Version 4. A Graphical User Interface for MODFLOW 6, U.S. Geological Survey Scientific Investigations Report 2019-5036. U.S. Geological Survey. https://doi.org/10.3133/sir2019503
|
[40] |
Yang, I.C., Yu, P., Rattray, G.W., Ferarese, J.S., Ryan, J.N., 1998. Hydrochemical Investigations in Characterizing the Unsaturated Zone at Yucca Mountain, Nevada, U.S. Geological Survey Water-Resources Investigations Report 98-4132. U.S. Geological Survey, Denver. https://doi.org/10.3133/wri984132
|
[41] |
Ye, M., Wang, L., Pohlmann, K.P., Chapman, J.B., 2016. Evaluating groundwater interbasin flow using multiple models and multiple types of data. Groundwater 54, 805-817. https://doi.org/10.1111/gwat.12422
|
[42] |
Zhou, X., Stetzenbach, K.J., Johannesson, K.H., Farnham, I.M., 2000. Major ion geochemistry of groundwater from southern Nevada and eastern California, USA. Chinese J. Geochem. 19, 1-22. https://doi.org/10.1007/BF03166646
|
[43] |
Zhou, X., 2004. Trace Element Geochemistry of Groundwater Flow Systems in Southern Nevada and Eastern California. Ph.D. Dissertation, University of Nevada, Las Vegas, Las Vegas
|