Volume 15 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Zi-hao Tang, Bruce Melville, Naresh Singhal, Asaad Shamseldin, Jin-hai Zheng, Da-wei Guan, Liang Cheng. 2022: Countermeasures for local scour at offshore wind turbine monopile foundations: A review. Water Science and Engineering, 15(1): 15-28. doi: 10.1016/j.wse.2021.12.010
Citation: Zi-hao Tang, Bruce Melville, Naresh Singhal, Asaad Shamseldin, Jin-hai Zheng, Da-wei Guan, Liang Cheng. 2022: Countermeasures for local scour at offshore wind turbine monopile foundations: A review. Water Science and Engineering, 15(1): 15-28. doi: 10.1016/j.wse.2021.12.010

Countermeasures for local scour at offshore wind turbine monopile foundations: A review

doi: 10.1016/j.wse.2021.12.010
Funds:

This work was supported by the Major International Joint Research Project POW3M of the National Natural Science Foundation of China (Grant No. 51920105013), and the Joint Doctoral Scholarship from Chinese Scholarship Council (CSC) and the University of Auckland.

  • Received Date: 2021-06-03
  • Accepted Date: 2021-10-23
  • Available Online: 2022-03-07
  • Local scour at monopile foundations of offshore wind turbines is one of the most critical structural stability issues. This article reviews the contemporary methods of scour countermeasures at monopile foundations. These methods include armouring countermeasures (e.g., riprap protection) to enhance the anti-scour ability of the bed materials and flow-altering countermeasures (e.g., collars and sacrificial piles) to reduce downflow or change flow patterns around the monopiles. Stability number and size-selection equations for riprap armour layers are summarised and compared. Moreover, other alternative methods to riprap are briefly introduced and presented. A typical graph of the scour depth reduction with different collar sizes and elevations under specific test conditions is summarised and compared with a plot for a pile founded on a caisson. Reduction rates for different flow-altering countermeasures, including the collar, are listed and compared. A newly developed soil improvement method, namely microbially induced calcite precipitation (MICP), is also reviewed and introduced as a scour protection method. As a popular bio-soil treatment method, MICP has a good potential as a scour countermeasure method. Bio-soil treatment methods and traditional armouring methods are defined as active and passive soil enhancement scour countermeasures, respectively.

     

  • loading
  • Abd El-Razek, M., El-Motaleb, M.A., Bayoumy, M., 2003. Scour reduction around bridge piers using internal openings through the pier. Alex. Eng. J. 42(2), 241-248.
    Abdelhaleem, F.S.F., 2019. Roughened bridge piers as a scour countermeasure under clear water conditions. ISH J. Hydraul. Eng. 25(1), 94-103. https://doi.org/10.1080/09715010.2017.1420498.
    Achal, V., Pan, X., 2011. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 62(3), 894-902. https://doi.org/10.1007/s00284-010-9801-4.
    Agrawal, K.A., Khan, M.A., Yi, Z., 2005. Handbook of Scour Countermeasures Designs. Transportation Research Center in City College of the City University of New York, New York.
    Bang, S.S., Galinat, J.K., Ramakrishnan, V., 2001. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzym. Microb.Technol. 28(4-5), 404-409. https://doi.org/10.1016/S0141-0229(00) 00348-3.
    Bhattacharya, S., 2014. Challenges in design of foundations for offshore wind Turbines. Eng. Technol. Ref. 1(1), 9. https://doi.org/10.1049/etr.2014.0041.
    Blanco, M.I., 2009. The economics of wind energy. Renew. Sustain. Energy Rev. 13(6-7), 1372-1382. https://doi.org/10.1016/j.rser.2008.09.004.
    Breusers, H.N.C., Raudkivi, A.J., 1991. Scouring, Hydraulic Structures Design Manual. Taylor & Francis, New York.
    Burbank, M.B., Weaver, T.J., Green, T.L., Williams, B., Crawford, R.L., 2011.Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol. J. 28(4), 301-312. https://doi.org/10.1080/01490451.2010.499929.
    Chavez, C.E.A., Stratigaki, V., Wu, M., Troch, P., Schendel, A., Welzel, M., Villanueva, R., Schlurmann, T., De Vos, L., Kisacik, D., et al., 2019.Large-scale experiments to improve monopile scour protection design adapted to climate change:The PROTEUS project. Energies 12(9), 1709.https://doi.org/10.3390/en12091709.
    Chen, S.C., Tfwala, S., Wu, T.Y., Chan, H.C., Chou, H.T., 2018. A hookedcollar for bridge piers protection:Flow fields and scour. Water 10(9), 1-12. https://doi.org/10.3390/w10091251.
    Cheng, L., Cord-Ruwisch, R., 2014. Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation. Geomicrobiol.J. 31(5), 396-406. https://doi.org/10.1080/01490451.2013.836579.
    Cheng, L., Shahin, M.A., Cord-Ruwisch, R., 2017. Surface percolation for soil improvement by biocementation utilizing in situ enriched Indigenous aerobic and anaerobic ureolytic soil microorganisms. Geomicrobiol. J. 34(6), 546-556. https://doi.org/10.1080/01490451.2016.1232766.
    Chiew, Y.M., 1992. Scour protection at bridge piers. J. Hydraul. Eng. 118(9), 1260-1269. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1260).
    Chiew, Y.M., 1995. Mechanics of riprap failure at bridge piers. J. Hydraul.Eng. 121(9), 635-643. https://doi.org/10.1061/(ASCE)0733-9429(1997) 123:5(481).
    Chiew, Y.M., Lim, F.H., 2000. Failure behavior of riprap layer at bridge piers under live-bed conditions. J. Hydraul. Eng. 126(1), 43-65. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(43).
    Chiew, Y.M., Lim, S.Y., 2003. Protection of bridge piers using a sacrificial sill.Proc. Inst. Civ. Eng. Water Marit. Eng. 156(1), 53-62. https://doi.org/10.1680/wame.2003.156.1.53.
    Chiew, Y.M., 2004. Local scour and riprap stability at bridge piers in a degrading channel. J. Hydraul. Eng. 130(3), 218-226. https://doi.org/10.1061/(asce)0733-9429(2008)134:10(1496).
    Croad, R.N., 1997. Protection from Scour of Bridge Piers Using Riprap.Transit New Zealand Research Report No. PR3-0071, Wellington, New Zealand.
    De Vos, L., 2008. Optimisation of Scour Protection Design for Monopiles and Quantification of Wave Run-Up. Ph. D. Dissertation. Ghent University, Ghent.
    De Vos, L., De Rouck, J., Troch, P., Frigaard, P., 2011. Empirical design of scour protections around monopile foundations. Part 1:Static approach. Coast.Eng. 58(6), 540-553. https://doi.org/10.1016/j.coastaleng.2011.02.001.
    De Vos, L., De Rouck, J., Troch, P., Frigaard, P., 2012. Empirical design of scour protections around monopile foundations. Part 2:Dynamic approach. Coast.Eng. 60(1), 286-298. https://doi.org/10.1016/j.coastaleng.2011.11.001.
    Den Boon, J., Sutherland, J., Whitehouse, R., Soulsby, R., Stam, C.J.M., Verhoeven, K., Høgedal, M., Hald, T., 2004. Scour behaviour and scour protection for monopile foundations of offshore wind turbines. In:Proceedings of the European Wind Energy Conference. London, pp. 1-14.
    Dey, S., Sumer, B.M., Fredsøe, J., 2006. Control of scour at vertical circular piles under waves and current. J. Geotech. Geoenviron. Eng. 132(3), 270-279. https://doi.org/10.1061/(ASCE)0733-9429(2006)132.
    Dhami, N.K., Sudhakara Reddy, M., Mukherjee, A., 2014. Application of calcifying bacteria for remediation of stones and cultural heritages. Front.Microbiol. 5, 304. https://doi.org/10.3389/fmicb.2014.00304.
    Do, J., Montoya, B.M., Gabr, M.A., 2020. Scour mitigation and erodibility improvement using microbially induced carbonate precipitation. Geotech.Test J. 44(5), 1467-1483. https://doi.org/10.1520/GTJ20190478.
    Ettema, R., 1980. Scour at Bridge Piers. Ph. D. Dissertation. The University of Auckland, Auckland.
    Fazeres-Ferradosa, T., Welzel, M., Schendel, A., Baelus, L., Santos, P.R., Pinto, F.T., 2020. Extended characterization of damage in rubble mound scour protections. Coast. Eng. 158(6), 103671. https://doi.org/10.1016/j.coastaleng.2020.103671.
    Ferraro, D., Fenocchi, A., Gaudio, R., 2020. Hydrodynamics of a bordered collar as a countermeasure against pier scouring:Hydrodynamics countermeasure scouring. Proc. R. Soc. A Math. Phys. Eng. Sci. 476, 20200393. https://doi.org/10.1098/rspa.2020.0393.
    Fotherby, L.M., 1993. Alternatives to riprap for protection against local scour at bridge piers. Transport. Res. Rec. 1420, 32-39.
    Fujita, Y., Redden, G.D., Ingram, J.C., Cortez, M.M., Ferris, F.G., Smith, R.W., 2004. Strontium incorporation into calcite generated by bacterial ureolysis. Geochem. Cosmochim. Acta 68(15), 3261-3270.https://doi.org/10.1016/j.gca.2003.12.018.
    Ghorbani, B., Kells, J.A., 2008. Effect of submerged vanes on the scour occurring at a cylindrical pier. J. Hydraul. Res. 46(5), 610-619. https://
    doi.org/10.3826/jhr.2008.3003.
    Gomez, M.G., Anderson, C.M., DeJong, J.T., Nelson, D.C., Lau, X.H., 2014.Stimulating in situ soil bacteria for bio-cementation of sands. In:GeoCongress 2014 Technical Papers, pp. 1674-1682. https://doi.org/10.1061/9780784413272.164. Atlanta.
    Gomez, M.G., Anderson, C.M., Graddy, C.M.R., DeJong, J.T., Nelson, D.C., Ginn, T.R., 2017. Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands. J. Geotech. Geoenviron. Eng. 143(5), 4016124. https://doi.org/10.1061/(asce)gt.1943-5606.0001640.
    Grimaldi, C., Gaudio, R., Calomino, F., Cardoso, A.H., 2009a. Countermeasures against local scouring at bridge piers:Slot and combined system of slot and bed sill. J. Hydraul. Eng. 135(5), 425-431. https://doi.org/10.1061/(asce)hy.1943-7900.0000035.
    Grimaldi, C., Gaudio, R., Calomino, F., Cardoso, A.H., 2009b. Control of scour at bridge piers by a wownstream bed sill. J. Hydraul. Eng. 135(1), 13-21. https://doi.org/10.1061/(asce)0733-9429(2009)135:1(13).
    Gronz, O., Hiller, P.H., Wirtz, S., Becker, K., Iserloh, T., Seeger, M., Brings, C., Aberle, J., Casper, M.C., Ries, J.B., 2016. Smartstones:A small 9-axis sensor implanted in stones to track their movements. Catena 142(7), 245-251. https://doi.org/10.1016/j.catena.2016.03.030.
    Guan, D., Chiew, Y.M., Wei, M., Hsieh, S.C., 2019. Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Int.J. Sediment Res. 34(2), 118-124. https://doi.org/10.1016/j.ijsrc.2018.07.001.
    Hamdan, N., 2015. Applications of Enzyme Induced Carbonate Precipitation(EICP) for Soil Improvement. Ph. D. Dissertation. Arizona State University, Phenix.
    Hamdan, N., Kavazanjian, E., Rittmann, B.E., Karatas, I., 2017. Carbonate mineral precipitation for soil improvement through microbial denitrification. Geomicrobiol. J. 34(2), 139-146. https://doi.org/10.1080/01490451.2016.1154117.
    Hong, J.H., Chiew, Y.M., Lu, J.Y., Lai, J.S., Lin, Y.B., 2012. Houfeng bridge failure in Taiwan. J. Hydraul. Eng. 138(2), 186-198. https://doi.org/10.1061/(asce)hy.1943-7900.0000430.
    Kularatna, N., Melville, B., Akeila, E., Kularatna, D., 2006. Implementation aspects and offline digital signal processing of a smart pebble for riverbed sediment transport monitoring. In:Proceedings of Sensers, vol. 2006.IEEE, Daegu, pp. 1093-1098. https://doi.org/10.1109/ICSENS. 2007.355816.
    Kumar, V., 1996. Reduction of Scour Around Bridge Piers Using Protective Devices. Ph. D. Dissertation. University of Roorkee, Roorkee.
    Kumar, V., Raju, K.G.R., Vittal, N., 1999. Reduction of local scour around bridge piers using slots and collars. J. Hydraul. Eng. 125(12), 1302-1305.
    Lambert, J.W.M., Novakowski, K., Blauw, M., Latil, M.N., Knight, L., Bayona, L., 2010. Pamper bacteria, they will help us:Application of biochemical mechanisms in geo-environmental engineering. In:Proceedings of GeoFlorida 2010:Advanced in Analysis, Modeling & Design.Florida, pp. 618-627.
    Lauchlan, C.S., 1999. Pier Scour Countermeasures. Ph. D. Dissertation. The University of Auckland, Auckland.
    Lauchlan, C.S., Melville, B.W., 2001. Riprap protection at bridge piers. J.Hydraul. Eng. 127(5), 412-418. https://doi.org/10.1061/(ASCE)0733-9429(2001)127.
    Liu, K., Jiang, N., Qin, J.-D., Wang, Y., Tang, C.S., Han, X.L., 2021. An experimental study of mitigating coastal sand dune erosion by microbialand enzymatic-induced carbonate precipitation. Acta Geotech. 16(2), 467-480. https://doi.org/10.1007/s11440-020-01046-z.
    Maniatis, G., Hoey, T.B., Hassan, M.A., Sventek, J., Hodge, R., Drysdale, T., Valyrakis, M., 2017. Calculating the explicit probability of entrainment based on inertial acceleration measurements. J. Hydraul. Eng. 143(4), 4016097. https://doi.org/10.1061/(asce)hy.1943-7900.0001262.
    Maniatis, G., Hoey, T., Hodge, R., Rickenmann, D., Badoux, A., 2020. Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers. Earth Surf. Dyn. 8(4), 1067-1099. https://doi.org/10.5194/esurf-8-1067-2020.
    Martinez,B.C.,DeJong,J.T.,Ginn,T.R.,Montoya,B.M.,Barkouki,T.H.,Hunt,C., Tanyu, B., Major, D., 2013. Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J. Geotech. Geoenviron. Eng. 139(4), 587-598. https://doi.org/10.1061/(asce)gt.1943-5606.0000787.
    Melville, B.W., 1975. Local Scour at Bridge Site. Ph. D. Dissertation. The University of Auckland, Auckland.
    Melville, B.W., Dongol, D.M., 1992. Bridge pier scour with debris accumulation. J. Hydraul. Eng. 118(9), 1306-1310. https://doi.org/10.1061/(asce) 0733-9429(1994)120:4(523).
    Melville, B.W., Raudkivi, A.J., 1996. Effects of foundation geometry on bridge pier scour. J. Hydraul. Eng. 122(4), 203-209. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(203).
    Melville, B.W., Hadfield, A.C., 1999. Use of sacrificial piles as pier scour countermeasures. J. Hydraul. Eng. 125(11), 1221-1224. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1221).
    Melville, B.W., Coleman, S.E., 2000. Bridge Scour. Water Resources Publications, Fort Collins.
    Moncada-M, A.T., Aguirre-Pe, J., Bolívar, J.C., Flores, E.J., 2009. Scour protection of circular bridge piers with collars and slots. J. Hydraul. Res. 47(1), 119-126. https://doi.org/10.3826/jhr.2009.3244.
    Montoya, B.M., Dejong, J.T., Boulanger, R.W., 2015. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. In:Proceeding of Bio-and Chemo-Mechanical Processes in Geotechnical Engineering:Geotechnique Symposium in 2013. ICE Publishing, London, pp. 125-135. https://doi.org/10.1680/bcmpge.60531.012.
    Mujah, D., Shahin, M.A., Cheng, L., 2017. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol. J. 34(6), 524-537. https://doi.org/10.1080/01490451.2016.1225866.
    Nazari-Sharabian, M., Nazari-Sharabian, A., Karakouzian, M., Karami, M., 2020. Sacrificial piles as scour countermeasures in river bridges:A numerical study using FLOW-3D. Civ. Eng. J. 6(6), 1091-1103. https://doi.org/10.28991/cej-2020-03091531.
    Ng, C., Ran, L., 2016. Introduction to offshore wind energy. In:Ng, C., Ran, L., eds., Offshore Wind Farms:Technologies, Design and Operation.Woodhead Publishing, Coventry, pp. 3-8. https://doi.org/10.1016/B978-0-08-100779-2.00001-5.
    Nielsen, A.W., Sumer, B.M., Fredsøe, J., Christensen, E.D., 2011. Sinking of armour layer around a cylinder exposed to a current. Proc. Inst. Civ. Eng.Marit. Eng. 164(4), 159-172. https://doi.org/10.1680/maen.2011.164.4.159.
    Nielsen, A.W., Probst, T., Petersen, T.U., Sumer, B.M., 2015. Sinking of armour layer around a vertical cylinder exposed to waves and current. Coast.Eng. 100(6), 58-66. https://doi.org/10.1016/j.coastaleng.2015.03.010.
    Nielsen, A.W., Petersen, T.U., 2019. Stability of cover stones around a vertical cylinder under the influence of waves and current. Coast. Eng. 154(9), 103563. https://doi.org/10.1016/j.coastaleng.2019.103563.
    North, N.N., Dollhopf, S.L., Petrie, L., Istok, J.D., Balkwill, D.L., Kostka, J.E., 2004. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl. Environ. Microbiol. 70(8), 4911-4920. https://doi.org/10.1128/AEM.70.8.4911-4920.2004.
    Odgaard, A.J., Kennedy, J.F., 1983. River-bend bank protection by submerged vanes. J. Hydraul. Eng. 109(8), 1161-1173. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:8(1161).
    Pandey, M., Azamathulla, H.M., Chaudhuri, S., Pu, J.H., Pourshahbaz, H., 2020.Reduction of time-dependent scour around piers using collars. Ocean Eng. 213(7), 107692. https://doi.org/10.1016/j.oceaneng.2020.107692.
    Park, J.H., Sok, C., Park, C.K., Kim, Y.D., 2016. A study on the effects of debris accumulation at sacrificial piles on bridge pier scour:I. Experimental results. KSCE J. Civ. Eng. 20(4), 1546-1551. https://doi.org/10.1007/s12205-015-0207-5.
    Parker, G., Toro-Escobar, C., Richard, L., Voigt, J., 1998. Countermeasures to Protect Bridge Piers from Scour. St. Anthony Falls Laboratory, University of Minnesota, Minneapolis.
    Parola, A.C., 1993. Stability of riprap at bridge piers. J. Hydraul. Eng. 119(10), 1080-1093. https://doi.org/10.1061/(ASCE)0733-9429.
    Petersen, T.U., Sumer, B.M., Fredsøe, J., Raaijmakers, T.C., Schouten, J.J., 2015. Edge scour at scour protections around piles in the marine environment:Laboratory and field investigation. Coast. Eng. 106(8), 42-72.https://doi.org/10.1016/j.coastaleng.2015.08.007.
    Putra, H., Yasuhara, H., Erizal, S., Fauzan, M., 2020. Review of enzyme-induced calcite precipitationas a ground-improvementtechnique. Infrastructure5(8), 1-14. https://doi.org/10.3390/INFRASTRUCTURES5080066.
    Qi, M., Chiew, Y.M., Hong, J.H., 2013. Suction effects on bridge pier scour under clear-water conditions. J. Hydraul. Eng. 139(6), 621-629. https://doi.org/10.1061/(asce)hy.1943-7900.0000711.
    Rahman, M.M., Hora, R.N., Ahenkorah, I., Beecham, S., Karim, M.R., Iqbal, A., 2020. State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustain. Times 12(15), 6281. https://doi.org/10.3390/SU12156281.
    Rashno, E., Reza Zarrati, A., Karimaei Tabarestani, M., 2020. Design of riprap for bridge pier groups. Can. J. Civ. Eng. 47(5), 516-522. https://doi.org/10.1139/cjce-2019-0007.
    Ruff, J.F., Fotherby, L.M., 1995. Bridge Scour Protection Systems Using Toskanes-Phase I. Final Report. Colorado State University and Fort Collins Transportation, Colorado.
    Salifu, E., MacLachlan, E., Iyer, K.R., Knapp, C.W., Tarantino, A., 2016.Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes:A preliminary investigation. Eng. Geol. 201(2), 96-105. https://doi.org/10.1016/j.enggeo.2015.12.027.
    Shanahan, C., Montoya, B.M., 2014. Strengthening coastal sand dunes using microbial-induced calcite precipitation. In:Proceedings of GeoCongress 2014. Atlanta, pp. 1683-1692. https://doi.org/10.1061/9780784413272.165.
    Shanahan, C., Montoya, B.M., 2016. Erosion reduction of coastal sands using microbial induced calcite precipitation. In:Proceedings of Geo-Chicago 2016. Chicago, pp. 451-457.
    Simons, D.B., Chen, Y.H., Swenson, L.J., 1984. Hydraulic Test to Develop Design Criteria for the Use of Reno Mattresses. Civil Engineering Department, Engineering Research Center of Colorado State University, Colorado.
    Soltani-Gerdefaramarzi, S., Afzalimehr, H., Chiew, Y.M., Lai, J.S., 2013. Jets to control scour around circular bridge piers. Can. J. Civ. Eng. 40(3), 204-212. https://doi.org/10.1139/cjce-2012-0240.
    Sumer, B.M., Fredsøe, J., 2002. The Mechanics of Scour in Marine Environment. World Scientific, Sigapore. https://doi.org/10.1142/4942.
    Sumer, B.M., Nielsen, A.W., 2013. Sinking failure of scour protection at wind turbine foundation. Proc. Inst. Civ. Eng. Energy 166(4), 170-188. https://doi.org/10.1680/ener.12.00006.
    Tabarestani, M., Zarrati, A.R., 2013. Design of stable riprap around aligned and skewed rectangular bridge piers. J. Hydraul. Eng. 139(8), 911-916.https://doi.org/10.1061/(asce)hy.1943-7900.0000731.
    Tabarestani, M., Zarrati, A.R., Mashahir, M.B., Mokallaf, E., 2015. Extent of riprap layer with different stone sizes around rectangular bridge piers with or without an attached collar. Sci. Iran. 22(3), 709-716.
    Tafarojnoruz, A., Gaudio, R., Dey, S., 2010. Flow-altering countermeasures against scour at bridge piers:A review. J. Hydraul. Res. 48(4), 441-452.https://doi.org/10.1080/00221686.2010.491645.
    Tafarojnoruz, A., Gaudio, R., Calomino, F., 2012. Evaluation of flow-altering countermeasures against bridge pier scour. J. Hydraul. Eng. 138(3), 297-305. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000512.
    Tanaka, S., Yano, M., 1967. Local scour around a circular cylinder. In:Proceedings of the 12th IAHR Congress. Colorado, pp. 125-134.
    Tobler, D.J., Cuthbert, M.O., Greswell, R.B., Riley, M.S., Renshaw, J.C., Handley-Sidhu, S., Phoenix, V.R., 2011. Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite.Geochem. Cosmochim. Acta 75(11), 3290-3301. https://doi.org/10.1016/j.gca.2011.03.023.
    US Army Corps of Engineers, 2002. Coastal Engineering Manual-Part I, Coastal Engineering Manual. Department of the Army, Washington, D.C.
    Valela, C., Nistor, I., Rennie, C.D., Lara, J.L., Maza, M., 2021. Hybrid modelling for design of a novel bridge pier collar for reducing scour. J. Hydraul. Eng. 147(5), 4021012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001875.
    van der Meer, J.W., 1988. Rock Slopes and Gravel Beaches under Wave Attack. Ph. D. Dissertation. Delft University of Technology, Delft.
    van Paassen, L.A., Daza, C.M., Staal, M., Sorokin, D.Y., van der Zon, W., van Loosdrecht, M.C.M., 2010. Potential soil reinforcement by biological denitrification. Ecol. Eng. 36(2), 168-175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
    van Paassen, L.A., 2011. Bio-mediated ground improvement:From laboratory experiment to pilot applications. In:Proceedings of Geo-Frontiers Congress 2011. Texas, pp. 4099-4108.
    Wang, C., Liang, F., Yu, X., 2017a. Experimental and numerical investigations on the performance of sacrificial piles in reducing local scour around pile groups.Nat. Hazards 85(3), 1417-1435. https://doi.org/10.1007/s11069-016-2634-0.
    Wang, C., Yu, X., Liang, F., 2017b. A review of bridge scour:Mechanism, estimation, monitoring and countermeasures. Nat. Hazards 87(3), 1881-1906. https://doi.org/10.1007/s11069-017-2842-2.
    Wang, L., Melville, B.W., Whittaker, C.N., Guan, D., 2018. Effects of a downstream submerged weir on local scour at bridge piers. J. HydroEnviron. Res. 20(6), 101-109. https://doi.org/10.1016/j.jher.2018.06.001.
    Wang, S., Wei, K., Shen, Z., Xiang, Q., 2019. Experimental investigation of local scour protection for cylindrical bridge piers using anti-scour collars.Water 11(7), 1515. https://doi.org/10.3390/w11071515.
    Wang, Z., Zhang, N., Jin, Y., Li, Q., Xu, J., 2021. Application of microbially induced calcium carbonate precipitation (MICP) in sand embankments for scouring/erosion control. Mar. Georesour. Geotechnol 39(12), 1459-1471.https://doi.org/10.1080/1064119X.2020.1850949.
    Wu, M., De Vos, L., Arboleda Chavez, C.E., Stratigaki, V., FazeresFerradosa, T., Rosa-Santos, P., Taveira-Pinto, F., Troch, P., 2020. Large scale experimental study of the scour protection damage around a monopile foundation under combined wave and current conditions. J. Mar.Sci. Eng. 8, 417. https://doi.org/10.3390/jmse8060417.
    Yang, Y., Melville, B.W., Macky, G.H., Shamseldin, A.Y., 2020. Temporal evolution of clear-water local scour at aligned and skewed complex bridge piers. J. Hydraul. Eng. 146(4), 4020026. https://doi.org/10.1061/(asce)hy.1943-7900.0001732.
    Zhao, Q., Li, L., Li, C., Li, M., Amini, F., Zhang, H., 2014. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. J. Mater. Civ. Eng. 26(12), 4014094. https://doi.org/10.1061/(asce)mt.1943-5533.0001013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (1220) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return