Volume 15 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
Yaneth A. Bustos-Terrones, Erick R. Bandala, Gabriela E. Moeller-Ch avez, Victoria Bustos-Terrones. 2022: Enhanced biological wastewater treatment using sodium alginateimmobilized microorganisms in a fluidized bed reactor. Water Science and Engineering, 15(2): 125-133. doi: 10.1016/j.wse.2022.02.002
Citation: Yaneth A. Bustos-Terrones, Erick R. Bandala, Gabriela E. Moeller-Ch avez, Victoria Bustos-Terrones. 2022: Enhanced biological wastewater treatment using sodium alginateimmobilized microorganisms in a fluidized bed reactor. Water Science and Engineering, 15(2): 125-133. doi: 10.1016/j.wse.2022.02.002

Enhanced biological wastewater treatment using sodium alginateimmobilized microorganisms in a fluidized bed reactor

doi: 10.1016/j.wse.2022.02.002
  • Received Date: 2021-06-25
  • Accepted Date: 2021-11-07
  • Rev Recd Date: 2021-11-07
  • Available Online: 2022-06-21
  • In this study, a microbial consortium isolated from an activated sludge tank of a conventional wastewater treatment plant was immobilized using sodium alginate (SA) as a support material for contaminant biodegradation in wastewater. A volume of 500 mL of activated sludge was immobilized in the SA beads (with a mass concentration of 25 g/L). The resulting SA beads were characterized, introduced into a fluidized bed reactor, fed with 1000 mL of the sample, and characterized again after the treatment process. The SA-immobilized microorganisms were tested first for degradation of organic matter (expressed as chemical oxygen demand) and total phosphorous in domestic wastewater, achieving removal efficiencies of 71% and 93%, respectively, after 12 h. Subsequently, the SA-immobilized microorganisms were tested for degradation of a basic blue 9 (BB9) textile dye in a condition that simulated textile wastewater. The efficiency of the BB9 degradation was found to be as high as 99.5% after 2 h. According to these results, SA-immobilized microorganisms were found to be an environmentally friendly and cost-effective alternative for treatment of municipal and industrial wastewater effluents.


  • loading
  • Ablouh, E., Essaghraoui, A., Eladlani, N., Rhazi, M., Taourirte, M., 2019.Uptake of Pb(II) onto nanochitosan/sodium alginate hybrid pearls:Mechanism and kinetics study. Water Environ. Res. 91(3), 239-249.https://doi.org/10.1002/wer.1050.
    Ahn, J.H., Foster, C.F., 2002. A comparison of mesophilic and thermophilic anaerobic upflow filters treating paper-pulp-liquors. Process Biochem. 38, 256-261. https://doi.org/10.1016/S0032-9592(02)00088-2.
    American Public Health Association (APHA), 2001. Standard Methods for the Examination of Water and Wastewater, twentieth ed. American Public Health Association, Washington, D.C.
    Bandaiphet, C., Prasertsan, P., 2006. Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydr. Polym. 66(2), 216-228. https://doi.org/10.1016/j.carbpol.2006.03.004.
    Banerjee, S., Tiwade, P.B., Sambhav, K., Banerjee, C., Bhaumik, S.K., 2019.Effect of alginate concentration in wastewater nutrient removal using alginateimmobilized microalgae pearls:Uptake kinetics and adsorption studies. Biochem. Eng. J. 149, 107241. https://doi.org/10.1016/j.bej.2019.107241.
    Cai, J., Pan, A., Li, Y., Xiao, Y., Zhou, Y., Chen, C., Sun, F., Su, X., 2020. A novel strategy for enhancing anaerobic biodegradation of an anthraquinone dye reactive blue 19 with resuscitation-promoting factors. Chemosphere 263, 127922. https://doi: 10.1016/j.chemosphere.2020.12.
    Cifci, D.I., Atav, R., Gunes, Y., Gunes, E., 2019. Determination of the color removal efficiency of laccase enzyme depending on dye class and chromophore. Water Sci. Technol. 80(1), 134-143. https://doi.org/10.2166/wst.2019.255.
    Cruz, I., Bashan, Y., Hernandez-Carmona, G., de-Bashan, L.E., 2013.Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl.Microbiol. Biotechnol. 97, 9847-9858. https://doi.org/10.1007/s00253-013-4703-6.
    de la Morena, S., Santos, V.E., García-Ochoa, F., 2019. Influence of oxygen transfer and uptake rates on dihydroxyacetone production from glycerol by Gluconobacter oxydans in resting cells operation. Biochem. Eng. J. 147, 20-28. https://doi.org/10.1016/j.bej.2019.03.021.
    de Souza, S.M., Bonilla, K.A., de Souza, A.A., 2010. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard Mater. 179(1-3), 35-42. https://doi.org/ 10.1016/j.jhazmat.2010.02.053.
    Emparan, Q., Harin, R., Jye, Y.S., 2019. Phycoremediation of treated palm oil mil effluent (TPOME) using Nannochloropsis sp. cells immobilized in the biological sodium alginate beads:Effect of POME concentration. Bioresources 14, 9429-9443.
    Fang, S., Wei, Y., Fu, L., Tian, G., Qu, H., 2020. Modeling of the minimum fluidization velocity and the incipient fluidization pressure drop in a conical fluidized bed with negative pressure. Appl. Sci. 10(24), 8764.https://doi.org/10.3390/app10248764.
    Fares, M.M., Abu Al-Rub, F.A., Talafha, T., 2020. Diblock sodium alginate grafted poly (N-vinylimidazole) in blank copolymeric beads and immobilized algal beads for water treatment. Chem. Eng. Res. Des. 153, 603-612. https://doi.org/10.1016/j.cherd.2019.11.001.
    Garcia-Ochoa, F., Gomez, E., Santos, V.E., Merchuk, J.C., 2010. Oxygen uptake rate in microbial processes:An overview. Biochem. Eng. J. 49(3), 289-307. https://doi.org/10.1016/j.bej.2010.01.011.
    Gnanaprakasam, F., Muthu, J., 2014. Alginate based hybrid copolymer hydrogels:Influence of pore morphology on cellematerial interaction. Carbohydr.Polym. 112, 235-244. https://doi.org/10.1016/j.carbpol.2014.05.083.
    Godiya, C.B., Xiao, Y., Lu, X., 2020. Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. Int. J.Biol. Macromol. 144, 671-681. https://doi.org/10.1016/j.ijbiomac. 2019.12.139.
    Goonetilleke, A., Liu, A., Managi, S., Wilson, C., Gardner, T., Bandala, E.R., Walker, L., Holden, J., Wibowo, M.A., Suripin, S., et al., 2017. Stormwater reuse, a viable option:Fact or fiction? Econ. Anal. Pol. 56, 14-17. https://doi.org/10.1016/j.eap.2017.08.001.
    Guo, Q., Bandala, E.R., Goonetilleke, A., Hong, N., Li, Y., Liu, A., 2021.Application of Chlorella pyrenoidosa embedded biochar beads for water treatment. J. Water Proc. Eng. 40, 101892. https://doi.org/10.1016/j.jwpe.2020.101892.
    Huang, Y., Liu, M., Chen, S., Jasmi, I.I., Tang, Y., Lin, S., 2019. Enhanced adsorption and slow release of phosphate by dolomite-alginate composite beads as potential fertilizer. Water Environ. Res. 91, 797-804. https://doi.org/10.1002/wer.1122.Hussain, F., Yu, H.W., Chon, K., Lee, Y.G., Eom, H., Chae, K.J., Oh, S.E., 2021.
    Real-time biomonitoring of oxygen uptake rate and biochemical oxygen demand using a novel optical biogas respirometric system. J. Environ.
    Manag. 277, 111467. https://doi.org/10.1016/j.jenvman.2020.111467.
    Irani, R., Khoshfetrat, A.B., Forouzesh, M., 2020. Real municipal wastewater treatment using simultaneous pre- and post-ozonation combined biological attached growth reactor:Energy consumption assessment. J. Environ.Chem. Eng. 9(1), 104595. https://doi.org/10.1016/j.jece.2020.104595.
    Isik, M., Sponza, D.T., 2005. Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorizing simulated textile wastewater.
    Process Biochem. 40, 1189-1198. https://doi.org/10.1016/j.procbio. 2004.04.014.
    Jaafari, J., Mesdaghinia, A., Nabizadeh, R., Hoseini, M., Mahvi, A., 2014.Influence of upflow velocity on performance and biofilm characteristics of Anaerobic Fluidized Bed Reactor (AFBR) in treating high-strength wastewater. Journal of Environmental Health Science and Engineering 12, 139. https://doi.org/10.1186/s40201-014-0139-x.
    Jaafari, J., Barzanouni, H., Mazloomi, S., Farahani, N.A., Sharafi, K., Soleimani, P., Haghighat, G.A., 2020. Effective adsorptive removal of reactive dyes by magnetic chitosan nanoparticles:Kinetic, isothermal studies and response surface methodology. Int. J. Biol. Macromol. 164(1), 344-355. https://doi.org/10.1016/j.ijbiomac.2020.07.04.
    Kapdan, I.K., 2005. Kinetic analysis of dyestuff and COD removal from synthetic wastewater in an anaerobic packed column reactor. Process Biochem. 40, 2545-2550. https://doi.org/10.1016/j.procbio.2004.11.002.
    Karadag, E., Saraydin, D., Caldiran, Y., Guven, O., 2000. Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polym. Adv. Technol. 1(2), 59-68. https://doi.org/10.1002/(SICI) 1099-1581(200002)11:2<59::AID-PAT937>3.0.CO;2-Z.
    Karthiga, D., Kumar, S., Kumar, S., 2016. Green synthesis of novel silver nanocomposite hydrogel based on sodium alginate as an efficient biosorbent for the dye wastewater treatment:Prediction of isotherm and kinetic parameters. Desalination Water Treat. 57, 1-14. https://doi.org/ 10.1080/19443994.2016.1178178.
    Kim, J.O., Park, J.K., Kim, J.H., Jin, S.G., Yong, C.S., Li, D.X., Choi, H., 2008. Development of polyvinyl alcoholesodium alginate gel-matrixbased wound dressing system containing nitrofurazone. Int. J. Pharm. 359(1-2), 79-86. https://doi.org/10.1016/j.ijpharm.2008.03.021.
    Kunii, D., Levenspiel, O., 1991. Fluidization Engineering (Series in Chemical Engineering), second ed. Butterworth-Heinemann, Stoneham.
    Kunii, D., Levenspiel, O., 1997. Circulating fluidized-bed reactors. Chem.
    Eng. Sci. 52(15), 2471-2482. https://doi.org/10.1016/s0009-2509(97) 00066-3.
    Martinez, S.A., Bustos, Y., 2009. Biodegradation of wastewater pollutants by activated sludge encapsulated inside calcium-alginate pearls in a tubular packed bed reactor. Biodegradation 20(5), 709-715. https://doi.org/ 10.1007/s10532-009-9258-y.
    Mekonnen, A., Leta, S., Kjau, K.N., 2017. Kinetic analysis of anaerobic sequencing batch reactor for the treatment of tannery wastewater. African J. Environ. Sci. 11(6), 339-348. https://doi.org/10.5897/AJEST 2017.2305.
    Mineta, R., Salehi, Z., Yoshikawa, H., Kawase, Y., 2011. Oxygen transfer during aerobic biodegradation of pollutants in a dense activated sludge slurry bubble column:Actual volumetric oxygen transfer coefficient and oxygen uptake rate in p-nitrophenol degradation by acclimated waste activated sludge. Biochem. Eng. J. 53(3), 266-274. https://doi.org/ 10.1016/j.bej.2010.11.006.
    Mujtaba, G., Lee, K., 2017. Treatment of real wastewater using co-culture of immobilized chlorella vulgaris and suspended activated sludge. Water Res. 120, 174-184. https://doi.org/10.1016/j.watres.2017.04.078.
    Priya, K.R., Sandhya, S., Swaminathan, K., 2009. Kinetic analysis of treatment of formaldehyde containing wastewater in a UAFB reactor. Chem. Eng. J. 148, 212-216. https://doi.org/10.1016/j.cej.2008.08.036.
    Przysta s, W., Zabłocka-Godlewska, E., Grabi nska-Sota, E., 2017. Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. Braz. J. Microbiol. 49(2), 285-295. https://doi.org/10.1016/j.bjm.2017.06.010.
    Shin, D., Kim, J., Park, C., 2019. Study on physical and chemical characteristics of microorganism immobilized media for advanced wastewater treatment. J. Water Proc. Eng. 29, 100784. https://doi.org/10.1016/j.jwpe.2019.100784.
    Shoushtarian, F., Negahban-Azar, M., 2020. Worldwide regulations and guidelines for agricultural water reuse:A critical review. Water 12, 971.https://doi.org/10.3390/w12040971.
    Sol e, A., Matamoros, V., 2016. Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate pearls. Chemosphere 164, 516-523. https://doi.org/10.1016/j.chemosphere.2016. 08.047.
    Su, X., Li, S., Xie, M., Tao, L., Zhou, Y., Xiao, Y., Lin, H., Chen, J., Sun, F., 2020. Enhancement of polychlorinated biphenyl biodegradation by resuscitation promoting factor (Rpf) and Rpf-responsive bacterial community. Chemosphere 263, 128283. https://doi.org/10.1016/j.chemos phere.2020.128283.
    Thakre, P.N., Mukherjee, S., Samanta, S., Barman, S., Halder, G., 2020. A mechanistic insight into defluoridation of simulated wastewater applying bio-inspired sodium alginate bead. Appl. Water Sci. 10(2), 65. https://doi.org/10.1007/s13201-020-1152-0.
    Upendar, G., Dutta, S., Chakraborty, J., Bhattacharyya, P., 2016. Removal of methylene blue dye using immobilized bacillus subtilis in batch & column reactor. Mater. Today Proc. 3(10), 3467-3472. https://doi.org/10.1016/j.matpr.2016.10.029.
    Wang, B., Gao, B., Zimmerman, A.R., Zheng, Y., Lyu, H., 2018. Novel biochar-impregnated calcium alginate pearls with improved water holding and nutrient retention properties. J. Environ. Manag. 209, 105-111.https://doi.org/10.1016/j.jenvman.2017.12.041.
    Wang, L., Li, H., Yu, D., Wang, Y., Wang, W., Wu, M., 2019. Hyperbranched polyamide-functionalized sodium alginate microsphere as a novel adsorbent for the removal of antimony(III) in wastewater. Environ. Sci. Pollut.Control Ser. 26, 27372-27384. https://doi.org/10.1007/s11356-019-05914-4.
    Wang, Y., Wang, H., Wang, X., Xiao, Y., Zhou, Y., Su, X., Cai, J., Sun, F., 2020. Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment:A critical review and update. Sci.Total Environ. 730, 139034. https://doi.org/10.1016/j.scitotenv. 2020.1390.
    Xie, J., Feng, N., Wang, R., Guo, Z., Dong, H., Cui, H., Wu, H., Qiu, G., Liu, X., 2020. A reusable biosorbent using Ca-alginate immobilized Providencia vermicola for Pd(II) recovery from acidic solution. Water Air Soil Pollut. 231(2), 1-12. https://doi.org/10.1007/s11270-020-4399-z.
    Zhang, L., Wu, W., Wang, J., 2007. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. Res. J. Environ. Sci. 19(11), 1293-1297. https://doi.org/10.1016/S1001-0742(07)60211-3.
    Zhang, W., Ren, X., He, J., Zhang, Q., Qiu, C., Fan, B., 2019. Application of natural mixed bacteria immobilized carriers to different kinds of organic wastewater treatment and microbial community comparison. J. Hazard Mater. 377, 113-123. https://doi.org/10.1016/j.jhazmat.2019.05.068.
    Zhao, X., Wang, X., Lou, T., 2021. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. J. Hazard Mater. 403, 124054. https://doi.org/10.1016/j.jhazmat. 2020.124054.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (24) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint