Volume 15 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
Amin Ghassemi, Mohsen Nasrabadi, Mohammad Hossein Omid, Ali Raeesi Estabragh. 2022: Effect of synthetic fibers on resisting scour caused by horizontal jet. Water Science and Engineering, 15(2): 152-160. doi: 10.1016/j.wse.2022.03.001
Citation: Amin Ghassemi, Mohsen Nasrabadi, Mohammad Hossein Omid, Ali Raeesi Estabragh. 2022: Effect of synthetic fibers on resisting scour caused by horizontal jet. Water Science and Engineering, 15(2): 152-160. doi: 10.1016/j.wse.2022.03.001

Effect of synthetic fibers on resisting scour caused by horizontal jet

doi: 10.1016/j.wse.2022.03.001
  • Received Date: 2021-08-21
  • Accepted Date: 2022-01-01
  • Rev Recd Date: 2022-01-01
  • Available Online: 2022-06-21
  • Given that the development of scour downstream of hydraulic structures increases the risk of structural damage, it is important to find costeffective and environmental approaches to reduce this risk. This study aimed to experimentally evaluate the effect of synthetic fibers on the scour profile downstream of a sluice gate with a rigid apron. Experiments were performed with the same Froude number and with different weight percentages of synthetic fibers on both non-cohesive and cohesive sediments. One uniform sand was used as the non-cohesive sediment, and three different cohesive sediments were prepared by mixing different percentages of kaolinite soil with the used sand. The scouring experiments showed that the presence of synthetic fibers did not considerably affect the scour hole dimension in non-cohesive sediments. Evaluation of the scour in the cohesive sediments in silty sand (SM) texture found that an increase in the percentage of silt reduced the scour hole dimensions. The effect of synthetic fibers on scour of SM-texture-based sediments was also investigated, and the results showed that increasing the percentage of synthetic fibers decreased the scour hole dimensions. In addition, the cohesive sediments in SM texture did not have a similar non-dimensional scour profile, and the presence of synthetic fibers did not significantly affect the scour hole.

     

  • loading
  • Abt, S.R., Ruff, J.F., 1982. Estimating culvert scour in cohesive material. J.Hydraul. Div. 108(1), 25-34. https://doi.org/10.1061/JYCEAJ.0005807.
    Ansari, S.A., Kothyari, U.C., Raju, K.G.R., 2003. Influence of cohesion on scour under submerged circular vertical jets. J. Hydraul. Eng. 129(12), 1014-1019.https://doi.org/10.1061/(ASCE)0733-9429(2003)129:12(1014).
    ASTM, 2006. ASTM D2487-11:Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken.
    ASTM, 2009. ASTM D6913-04-1:Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, West Conshohocken. https://doi.org/10.1520/D6913-04-01.
    ASTM, 2010a. ASTM D4318-10-1:Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken.
    ASTM, 2010b. ASTM D854-14:Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken.
    ASTM, 2010c. ASTM D792:Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International, West Conshohocken.
    ASTM, 2012. ASTM D698-07:Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3(600 kN-m/m3)). ASTM International, West Conshohocken.
    ASTM, 2017a. ASTM D4595-17:Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method. ASTM International, West Conshohocken.
    ASTM, 2017b. ASTM D5322-17:Standard Practice for Laboratory Immersion Procedures for Evaluating the Chemical Resistance of Geosynthetics to Liquids. ASTM International, West Conshohocken.
    Attom, M.F., Al-Akhras, N.M., Malkawi, A.I., 2009. Effect of fibres on the mechanical properties of clayey soil. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 162(5), 277-282. https://doi.org/ 10.1680/geng.2009.162.5.277.
    Bey, A., Faruque, M., Balachandar, R., 2008. Effects of varying submergence and channel width on local scour by plane turbulent wall jets. J. Hydraul.Res. 46(6), 764-776. https://doi.org/10.1080/00221686.2008.9521921.
    Chatterjee, S., Ghosh, S., Chatterjee, M., 1994. Local scour due to submerged horizontal jet. J. Hydraul. Eng. 120(8), 973-992. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(973).
    Das, B.M., 2013. Advanced Soil Mechanics. CRC Press, Boca Raton.
    Debnath, K., Chaudhuri, S., 2012. Local scour around non-circular piers in clayesand mixed cohesive sediment beds. Eng. Geol. 151, 1-14. https://doi.org/10.1016/j.enggeo.2012.09.013.
    Dey, S., Westrich, B., 2003. Hydraulics of submerged jet subject to change in cohesive bed geometry. J. Hydraul. Eng. 129(1), 44-53. https://doi.org/ 10.1061/(ASCE)0733-9429(2003)129:1(44).
    Dey, S., Sarkar, A., 2006. Scour downstream of an apron due to submerged horizontal jets. J. Hydraul. Eng. 132(3), 246-257. https://doi.org/10.1061/(ASCE)0733-9429 (2006)132:3(246).
    Estabragh, A., Namdar, P., Javadi, A., 2012. Behavior of cement-stabilized clay reinforced with nylon fiber. Geosynth. Int. 19(1), 85-92. https://doi.org/10.1680/gein.2012.19.1.85.
    Estabragh, A., Soltannajad, K., Javadi, A., 2014. Improving piping resistance using randomly distributed fibers. Geotext. Geomembranes 42(1), 15-24.https://doi.org/10.1016/j.geotexmem.2013.12.005.
    Farhoudi, J., Smith, K.V., 1985. Local scour profiles downstream of hydraulic jump. J. Hydraul. Res. 23(4), 343-358. https://doi.org/10.1080/ 00221688509499344.
    Hamidifar, H., Omid, M.H., Nasrabadi, M., 2011. Scour downstream of a rough rigid apron. World Appl. Sci. J. 14(8), 1169-1178.
    Hamidifar, H., Nasrabadi, M., Omid, M.H., 2017. Using a bed sill as a scour countermeasure downstream of an apron. Ain Shams Eng. J. 9, 1663-1669. https://doi.org/10.1016/j.asej.2016.08.016.
    Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., Zadhoush, A., 2012. A simple review of soil reinforcement by using natural and synthetic fibers.Construct. Build. Mater. 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
    Hoare, D., 1979. Laboratory study of granular soils reinforced with randomly oriented discrete fibers. In:Proceedings of the International Conference on Soil Reinforcement. Paris, pp. 47-52.
    Hong, S., Biering, C., Sturm, T.W., Yoon, K.S., Gonzalez-Castro, J.A., 2015.Effect of submergence and apron length on spillway scour:Case study.Water 7(10), 5378-5395. https://doi.org/10.3390/w7105378.
    Jha, K., Mandal, J.A., 1988. A review of research and literature on the use of geosynthetics in the modern geotechnical world. In:Proceedings of the First Indian Geotextiles Conference on Reinforced Soil and Geotextiles.Indian Institute of Technology, pp. 85-93.
    Kells, J., Balachandar, R., Hagel, K., 2001. Effect of grain size on local channel scour below a sluice gate. Can. J. Civ. Eng. 28(3), 440-451.https://doi.org/10.1139/l01-012.
    Kofi Ampadu, S.I., 2009. Technical session 1c:Problematic soils and geosynthetic material. In:Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria, pp. 3263-3277.
    Kuti, E.O., Yen, C.L., 1976. Scouring of cohesive soils. J. Hydraul. Res. 14(3), 195-206. https://doi.org/10.1080/00221687609499667.
    Lim, S.Y., Cheng, N.S., 1998. Prediction of live-bed scour at bridge abutments.J. Hydraul. Eng. 124(6), 635-638. https://doi.org/10.1061/(ASCE)0733-9429 (1998)124:6(635).
    Maher, M.H., Gray, D.H., 1990. Static response of sands reinforced with randomly distributed fibers. Journal of Geotechnical Engineering 116(11), 1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
    Mazurek, K.A., 2001. Scour of Clay by Jets. University of Alberta Edmonton, Alberta.Meftah, M.B., Mossa, M., 2019. New approach to predicting local scour downstream of grade-control structure. J. Hydraul. Eng. 146(2), 04019058.https://doi.org/10.1061/(ASCE)HY.1943-7900.0001649, 1-13.
    Mitchener, H., Torfs, H., 1996. Erosion of mud/sand mixtures. Coast. Eng. 29(1-2), 1-25. https://doi.org/10.1016/S0378-3839(96)00002-6.
    Mostafa, T.S., Imran, J., Chaudhry, M.H., Kahn, I.B., 2008. Erosion resistance of cohesive soils. J. Hydraul. Res. 46(6), 777-787. https://doi.org/10.1080/ 00221686.2008.9521922.
    Nasrabadi, M., Omid, M.H., Hamidifar, H., 2015. Local scouring at bed sill downstream of turbulent jets. In:E-proceedings of the 36th IAHR World Congress. IAHR, the Hague, pp. 1503-1510.
    Navy, U., 1986. Design Manual:Soil Mechanics, Foundations, and Earth Structures. Naval Facilities Engineering Command, Alexandria.
    Nik Hassan, N., Narayanan, R., 1985. Local scour downstream of an apron. J.Hydraul. Eng. 111(11), 1371-1384. https://doi.org/10.1061/(ASCE)0733-9429 (1985)111:11(1371).
    Nishiya, T., Makino, R., Dang, N.V., 1996. Submerged jumps at an abrupt drop. Hosei University Departmental Bulletin Paper 32, 13-17. https://doi.org/10.15002/00003809.
    Paulson, J.N., 1987. Geosynthetic material and physical properties relevant to soil reinforcement applications. Geotext. Geomembranes 6(1-3), 211-223. https://doi.org/10.1016/0266-1144(87)90067-7.
    Rajaratnam, N., Macdougall, R.K., 1983. Erosion by plane wall jets with minimum tailwater. J. Hydraul. Eng. 109(7), 1061-1064. https://doi.org/ 10.1061/(ASCE)0733-9429(1983)109:7(1061).
    Yetimoglu, T., Salbas, O., 2003. A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotext. Geomembranes 21(2), 103-110. https://doi.org/10.1016/S0266-1144(03)00003-7.
    Yetimoglu, T., Inanir, M., Inanir, O.E., 2005. A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotext.Geomembranes 23(2), 174-183. https://doi.org/10.1016/j.geotexmem. 2004.09.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (184) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return