Citation: | Amin Ghassemi, Mohsen Nasrabadi, Mohammad Hossein Omid, Ali Raeesi Estabragh. 2022: Effect of synthetic fibers on resisting scour caused by horizontal jet. Water Science and Engineering, 15(2): 152-160. doi: 10.1016/j.wse.2022.03.001 |
Abt, S.R., Ruff, J.F., 1982. Estimating culvert scour in cohesive material. J.Hydraul. Div. 108(1), 25-34. https://doi.org/10.1061/JYCEAJ.0005807.
|
Ansari, S.A., Kothyari, U.C., Raju, K.G.R., 2003. Influence of cohesion on scour under submerged circular vertical jets. J. Hydraul. Eng. 129(12), 1014-1019.https://doi.org/10.1061/(ASCE)0733-9429(2003)129:12(1014).
|
ASTM, 2006. ASTM D2487-11:Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken.
|
ASTM, 2009. ASTM D6913-04-1:Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, West Conshohocken. https://doi.org/10.1520/D6913-04-01.
|
ASTM, 2010a. ASTM D4318-10-1:Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken.
|
ASTM, 2010b. ASTM D854-14:Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken.
|
ASTM, 2010c. ASTM D792:Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International, West Conshohocken.
|
ASTM, 2012. ASTM D698-07:Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3(600 kN-m/m3)). ASTM International, West Conshohocken.
|
ASTM, 2017a. ASTM D4595-17:Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method. ASTM International, West Conshohocken.
|
ASTM, 2017b. ASTM D5322-17:Standard Practice for Laboratory Immersion Procedures for Evaluating the Chemical Resistance of Geosynthetics to Liquids. ASTM International, West Conshohocken.
|
Attom, M.F., Al-Akhras, N.M., Malkawi, A.I., 2009. Effect of fibres on the mechanical properties of clayey soil. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 162(5), 277-282. https://doi.org/ 10.1680/geng.2009.162.5.277.
|
Bey, A., Faruque, M., Balachandar, R., 2008. Effects of varying submergence and channel width on local scour by plane turbulent wall jets. J. Hydraul.Res. 46(6), 764-776. https://doi.org/10.1080/00221686.2008.9521921.
|
Chatterjee, S., Ghosh, S., Chatterjee, M., 1994. Local scour due to submerged horizontal jet. J. Hydraul. Eng. 120(8), 973-992. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(973).
|
Das, B.M., 2013. Advanced Soil Mechanics. CRC Press, Boca Raton.
|
Debnath, K., Chaudhuri, S., 2012. Local scour around non-circular piers in clayesand mixed cohesive sediment beds. Eng. Geol. 151, 1-14. https://doi.org/10.1016/j.enggeo.2012.09.013.
|
Dey, S., Westrich, B., 2003. Hydraulics of submerged jet subject to change in cohesive bed geometry. J. Hydraul. Eng. 129(1), 44-53. https://doi.org/ 10.1061/(ASCE)0733-9429(2003)129:1(44).
|
Dey, S., Sarkar, A., 2006. Scour downstream of an apron due to submerged horizontal jets. J. Hydraul. Eng. 132(3), 246-257. https://doi.org/10.1061/(ASCE)0733-9429 (2006)132:3(246).
|
Estabragh, A., Namdar, P., Javadi, A., 2012. Behavior of cement-stabilized clay reinforced with nylon fiber. Geosynth. Int. 19(1), 85-92. https://doi.org/10.1680/gein.2012.19.1.85.
|
Estabragh, A., Soltannajad, K., Javadi, A., 2014. Improving piping resistance using randomly distributed fibers. Geotext. Geomembranes 42(1), 15-24.https://doi.org/10.1016/j.geotexmem.2013.12.005.
|
Farhoudi, J., Smith, K.V., 1985. Local scour profiles downstream of hydraulic jump. J. Hydraul. Res. 23(4), 343-358. https://doi.org/10.1080/ 00221688509499344.
|
Hamidifar, H., Omid, M.H., Nasrabadi, M., 2011. Scour downstream of a rough rigid apron. World Appl. Sci. J. 14(8), 1169-1178.
|
Hamidifar, H., Nasrabadi, M., Omid, M.H., 2017. Using a bed sill as a scour countermeasure downstream of an apron. Ain Shams Eng. J. 9, 1663-1669. https://doi.org/10.1016/j.asej.2016.08.016.
|
Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., Zadhoush, A., 2012. A simple review of soil reinforcement by using natural and synthetic fibers.Construct. Build. Mater. 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
|
Hoare, D., 1979. Laboratory study of granular soils reinforced with randomly oriented discrete fibers. In:Proceedings of the International Conference on Soil Reinforcement. Paris, pp. 47-52.
|
Hong, S., Biering, C., Sturm, T.W., Yoon, K.S., Gonzalez-Castro, J.A., 2015.Effect of submergence and apron length on spillway scour:Case study.Water 7(10), 5378-5395. https://doi.org/10.3390/w7105378.
|
Jha, K., Mandal, J.A., 1988. A review of research and literature on the use of geosynthetics in the modern geotechnical world. In:Proceedings of the First Indian Geotextiles Conference on Reinforced Soil and Geotextiles.Indian Institute of Technology, pp. 85-93.
|
Kells, J., Balachandar, R., Hagel, K., 2001. Effect of grain size on local channel scour below a sluice gate. Can. J. Civ. Eng. 28(3), 440-451.https://doi.org/10.1139/l01-012.
|
Kofi Ampadu, S.I., 2009. Technical session 1c:Problematic soils and geosynthetic material. In:Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria, pp. 3263-3277.
|
Kuti, E.O., Yen, C.L., 1976. Scouring of cohesive soils. J. Hydraul. Res. 14(3), 195-206. https://doi.org/10.1080/00221687609499667.
|
Lim, S.Y., Cheng, N.S., 1998. Prediction of live-bed scour at bridge abutments.J. Hydraul. Eng. 124(6), 635-638. https://doi.org/10.1061/(ASCE)0733-9429 (1998)124:6(635).
|
Maher, M.H., Gray, D.H., 1990. Static response of sands reinforced with randomly distributed fibers. Journal of Geotechnical Engineering 116(11), 1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
|
Mazurek, K.A., 2001. Scour of Clay by Jets. University of Alberta Edmonton, Alberta.Meftah, M.B., Mossa, M., 2019. New approach to predicting local scour downstream of grade-control structure. J. Hydraul. Eng. 146(2), 04019058.https://doi.org/10.1061/(ASCE)HY.1943-7900.0001649, 1-13.
|
Mitchener, H., Torfs, H., 1996. Erosion of mud/sand mixtures. Coast. Eng. 29(1-2), 1-25. https://doi.org/10.1016/S0378-3839(96)00002-6.
|
Mostafa, T.S., Imran, J., Chaudhry, M.H., Kahn, I.B., 2008. Erosion resistance of cohesive soils. J. Hydraul. Res. 46(6), 777-787. https://doi.org/10.1080/ 00221686.2008.9521922.
|
Nasrabadi, M., Omid, M.H., Hamidifar, H., 2015. Local scouring at bed sill downstream of turbulent jets. In:E-proceedings of the 36th IAHR World Congress. IAHR, the Hague, pp. 1503-1510.
|
Navy, U., 1986. Design Manual:Soil Mechanics, Foundations, and Earth Structures. Naval Facilities Engineering Command, Alexandria.
|
Nik Hassan, N., Narayanan, R., 1985. Local scour downstream of an apron. J.Hydraul. Eng. 111(11), 1371-1384. https://doi.org/10.1061/(ASCE)0733-9429 (1985)111:11(1371).
|
Nishiya, T., Makino, R., Dang, N.V., 1996. Submerged jumps at an abrupt drop. Hosei University Departmental Bulletin Paper 32, 13-17. https://doi.org/10.15002/00003809.
|
Paulson, J.N., 1987. Geosynthetic material and physical properties relevant to soil reinforcement applications. Geotext. Geomembranes 6(1-3), 211-223. https://doi.org/10.1016/0266-1144(87)90067-7.
|
Rajaratnam, N., Macdougall, R.K., 1983. Erosion by plane wall jets with minimum tailwater. J. Hydraul. Eng. 109(7), 1061-1064. https://doi.org/ 10.1061/(ASCE)0733-9429(1983)109:7(1061).
|
Yetimoglu, T., Salbas, O., 2003. A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotext. Geomembranes 21(2), 103-110. https://doi.org/10.1016/S0266-1144(03)00003-7.
|
Yetimoglu, T., Inanir, M., Inanir, O.E., 2005. A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotext.Geomembranes 23(2), 174-183. https://doi.org/10.1016/j.geotexmem. 2004.09.004.
|