Citation: | Zhen-xiang Jiang, Hui Chen. 2022: A new early warning method for dam displacement behavior based on non-normal distribution function. Water Science and Engineering, 15(2): 170-178. doi: 10.1016/j.wse.2022.04.001 |
Ahn, J.Y., Fuchs, S., Oh, R., 2021. A copula transformation in multivariate mixed discrete-continuous models. Fuzzy Set. Syst. 415, 54-75. https://doi.org/10.1016/j.fss.2020.11.008.
|
Alcay, S., Yigit, C.O., Inal, C., Ceylan, A., 2018. Analysis of displacement response of the Ermenek Dam monitored by an integrated geodetic and pendulum system. Int. J. Civ. Eng. 16(10B), 1279-1291. https://doi.org/10.1007/s40999-017-0211-x.
|
Chen, B., Hu, T.Y., Huang, Z.S., Fang, C.H., 2019. A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data. Struct. Health Monit. 18(5-6), 1355-1371. https://doi.org/10.1177/1475921718797949.
|
Chen, B., Huang, Z., Bao, T., Zhu, Z., 2021. Deformation early-warning index for heightened gravity dam during impoundment period. Water Sci. Eng. 14(1), 54-64. https://doi.org/10.1016/j.wse.2021.03.001.
|
Dai, B., Gu, C.S., Zhao, E.F., Qin, X.N., 2018. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Struct.Control Health Monit. 25(6), e2170. https://doi.org/10.1002/stc.2170.
|
de Granrut, M., Simon, A., Dias, D., 2019. Artificial neural networks for the interpretation of piezometric levels at the rockeconcrete interface of arch dams.
|
Eng. Struct. 178, 616-634. https://doi.org/10.1016/j.engstruct.2018.10.033.
|
Gamse, S., Zhou, W.H., Tan, F., Yuen, K.V., 2018. Hydrostaticeseasonetime model updating using Bayesian model class selection. Reliab. Eng. Syst.Saf. 169, 40-50. https://doi.org/10.1016/j.ress.2017.07.018.
|
Gamse, S., Henriques, M.J., Oberguggenberger, M., Mata, J.T., 2020. Analysis of periodicities in long-term displacement time series in concrete dams. Struct.Control Health Monit. 27(3), e2477. https://doi.org/10.1002/stc.2477.
|
Gu, H., Yang, M., Gu, C., Huang, X., 2021. A factor mining model with optimized random forest for concrete dam deformation monitoring. Water Sci. Eng. 14(4), 330-336. https://doi.org/10.1016/j.wse.2021.10.004.
|
Hellgren, R., Malm, R., Ansell, A., 2020. Performance of data-based models for early detection of damage in concrete dams. Struct. Infrastruct. Eng. 17(2), 275-289. https://doi.org/10.1080/15732479.2020.1737146.
|
Hu, J., Wu, S.H., 2019. Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks. Struct. Health Monit. 18(2), 546-562. https://doi.org/10.1177/1475921718760309.
|
Huang, X.F., Zheng, D.J., Yang, M., Gu, H., Su, H.Z., Cui, X.B., Cao, W.H., 2018. Displacement aging component-based stability analysis for the concrete dam. Geomech. Eng. 14(3), 241-246. https://doi.org/10.12989/gae.2018.14.3.241.
|
Kakizawa, Y., 2021. Recursive asymmetric kernel density estimation for nonnegative data. J. Nonparametric Statistics 33(2), 197-224. https://doi.org/10.1080/10485252.2021.1928120.
|
Kang, F., Liu, X., Li, J.J., 2020. Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines. Struct. Health Monit. 19(4), 987-1002. https://doi.org/10.1177/1475921719872939.
|
Li, X., Li, Y., Lu, X., Wang, Y.F., Zhang, H., Zhang, P., 2020. An online anomaly recognition and early warning model for dam safety monitoring data. Struct. Health Monit. 19(3), 796-809. https://doi.org/10.1177/1475921719864265.
|
Liu, W.J., Pan, J.W., Ren, Y.S., Wu, Z.G., Wang, J.T., 2020. Coupling prediction model for long-term displacements of arch dams based on long short-term memory network. Struct. Control Health Monit. 27(7), e2548.https://doi.org/10.1002/stc.2548.
|
Sato, H., Sasaki, T., Kondo, M., Kobori, T., Onodera, A., Yoshikawa, K., Sango, D., Morita, Y., 2017. Basic investigation of displacement monitoring of dams following earthquakes based on SAR satellite data. J. Disaster Res. 12(3), 515-525. https://doi.org/10.20965/jdr.2017.p0515.
|
Shao, C.F., Gu, C.S., Yang, M., Xu, Y.X., Su, H.Z., 2018. A novel model of dam displacement based on panel data. Struct. Control Health Monit. 25(1), e2037. https://doi.org/10.1002/stc.2037.
|
Sigtryggsdottir, F.G., Snaebjoernsson, J.T., Grande, L., 2018. Statistical model for dam-settlement prediction and structural-health assessment. J. Geotech.Geoenviron. Eng. 144(9), 04018059. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001916.
|
Su, H.Z., Yang, M., Wen, Z.P., Cao, J.P., 2016. Deformation-based safety monitoring model for high slope in hydropower project. J. Civil Struct.Health Monit. 6(5), 779-790. https://doi.org/10.1007/s13349-016-0198-z.
|
Taaffe, K., Pearce, B., Ritchie, G., 2021. Using kernel density estimation to model surgical procedure duration. Int. Trans. Oper. Res. 28(1), 401-418.https://doi.org/10.1111/itor.12561.
|
Tabari, M.M.R., Sanayei, H.R.Z., 2019. Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models. Soft Comput. 23(19), 9629-9645. https://doi.org/10.1007/s00500-018-3528-8.
|
Tonini, D., 1956. Observed behavior of several Italian arch dams. J. Power Div. 3, 82-86. https://doi.org/10.1061/JPWEAM.0000062.
|
Tsionas, M.G., Andrikopoulos, A., 2020. On a high-dimensional model representation method based on Copulas. Eur. J. Oper. Res. 284(3), 967-979.https://doi.org/10.1016/j.ejor.2020.01.026.
|
Yang, Y., Sang, X.Z., Yang, S.M., Hou, X.H., Huang, Y.J., 2019. High-precision vision sensor method for dam surface displacement measurement.IEEE Sensor. J. 19(24), 12475-12481. https://doi.org/10.1109/JSEN.2019.2940069.
|
Yavasoglu, H.H., Kalkan, Y., Tiryakioglu, I., Yigit, C.O., Ozbey, V., Alkan, M.N., Bilgi, S., Alkan, R.M., 2018. Monitoring the deformation and strain analysis on the Ataturk Dam, Turkey. Geomatics Nat. Hazards Risk 9(1), 94-107. https://doi.org/10.1080/19475705.2017.1411400.
|