Volume 15 Issue 3
Aug.  2022
Turn off MathJax
Article Contents
W.G. Madusha Lakmali, A.D. Sarangi N.P. Athukorala, Keerthi B. Jayasundera. 2022: Investigation of Pb(II) bioremediation potential of algae and cyanobacteria strains isolated from polluted water. Water Science and Engineering, 15(3): 237-246. doi: 10.1016/j.wse.2022.04.003
Citation: W.G. Madusha Lakmali, A.D. Sarangi N.P. Athukorala, Keerthi B. Jayasundera. 2022: Investigation of Pb(II) bioremediation potential of algae and cyanobacteria strains isolated from polluted water. Water Science and Engineering, 15(3): 237-246. doi: 10.1016/j.wse.2022.04.003

Investigation of Pb(II) bioremediation potential of algae and cyanobacteria strains isolated from polluted water

doi: 10.1016/j.wse.2022.04.003
Funds:

This work was supported by the University of Peradeniya, Sri Lanka (Grant No. URG/2016/50/S).

  • Received Date: 2021-03-21
  • Accepted Date: 2022-03-01
  • Rev Recd Date: 2022-03-01
  • Available Online: 2022-08-24
  • Algae and cyanobacteria are known to be able to remove a variety of pollutants from water, including toxic metal ions. In this study, algal and cyanobacterial species growing in two polluted water bodies were identified, and the Pb(II) removal ability of these isolated species was investigated. Based on microscopic observations, 27 species were identified, and nine species were isolated as pure cultures. Pb(II) bioremediation of five selected species (Anacystis sp., Chlorella sp. 1, Monoraphidium sp., Phormidium sp., and Uronema sp.) was studied in detail. The mean Pb(II) removal abilities varied among these five species: Phormidium sp. > Monoraphidium sp. > Uronema sp. > Chlorella sp. 1 > Anacystis sp. The Pb(II) tolerance of each species was determined based on the live cell percentage and biofilm formation capacity. Within a period of 3 d, Phormidium sp., Monoraphidium sp., and Uronema sp. showed nearly 90% of survival, and all five species demonstrated biofilm formation capacities exceeding 50%. Furthermore, the Pb(II) removal ability of the five species exhibited a strong positive correlation with the live cell percentage and showed a strong negative correlation with the biofilm formation capacity. In conclusion, Phormidium sp., Monoraphidium sp., and Uronema sp. exhibited high tolerances towards Pb(II) and presented high removal abilities. Thus, these species can be identified as potential sorbents for development of suitable adsorption systems to remove Pb(II) from aqueous solutions.

     

  • loading
  • [1]
    Akhtar, N., Iqbal, M., Zafar, S.I., Iqbal, J., 2008. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J. Environ. Sci. 20(2), 231-239. https://doi.org/10.1016/S1001-0742(08)60036-4
    [2]
    Al-Thani, R.F., Yasseen, B.T., 2021. Perspectives of future water sources in Qatar by phytoremediation: Biodiversity at ponds and modern approach. International Journal of Phytoremediation 23(8), 866-889. https://doi.org/10.1080/15226514.2020.1859986
    [3]
    Alluri, H.K., Ronda, S.R., Settalluri, V.S., Bondili, J.S., Suryanarayana, V., Venkateshwar, P., 2007. Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology 6(25), 2924-2931. https://doi.org/10.5897/AJB2007.000-2461
    [4]
    Bácsi, I., Novák, Z., Jánószky, M., B-Béres, V., Grigorszky, I., Nagy, S.A., 2015. The sensitivity of two Monoraphidium species to zinc: Their possible future role in bioremediation. Int. J. Environ. Sci. Technol. 12, 2455-2466. https://doi.org/10.1007/s13762-014-0647-3
    [5]
    Bajguz, A., 2010. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ. Exp. Bot. 68, 175-179. https://doi.org/10.1016/j.envexpbot.2009.11.003
    [6]
    Barros, M.U.G., Lopes, I.K.C., Carvalho, S.M.C., Neto, J.C., 2017. Impact of filamentous cyanobacteria on the water quality of two tropical reservoirs. RBRH 22, e6. https://doi.org/10.1590/2318-0331.011716072
    [7]
    Bellinger, E.G., Sigee, D.C., 2015. Freshwater Algae: Identification, Enumeration and Use as Bioindicators. John Wiley & Sons, New York
    [8]
    Blanco, A., Sanz, B., Llama, M.J., Serra, J.L., 1999. Biosorption of heavy metals to immobilised Phormidium laminosum biomass. J. Biotechnol. 69, 227-240. https://doi.org/10.1016/S0168-1656(99)00046-2
    [9]
    Chekroun, K.B., Baghour, M., 2013. The role of algae in phytoremediation of heavy metals: A review. J. Mater. Environ. Sci. 4(6), 873-880
    [10]
    Dahiya, S., Tripathi, R.M., Hegde, A.G., 2008. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. J. Hazard. Mater. 150(2), 376-386. https://doi.org/10.1016/j.jhazmat.2007.04.134
    [11]
    Das, D., Chakraborty, S., Bhattacharjee, C., Chowdhury, R., 2016. Biosorption of lead ions (Pb2+) from simulated wastewater using residual biomass of microalgae. Desalin. Water Treat. 57, 4576-4586. https://doi.org/10.1080/19443994.2014.994105
    [12]
    De Philippis, R., Colica, G., Micheletti, E., 2011. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Appl. Microbiol. Biotechnol. 92, 697-708. https://doi.org/10.1007/s00253-011-3601-z
    [13]
    De-Bashan, L.E., Bashan, Y., 2010. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 101, 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043
    [14]
    Dissanayake, C.B., Senaratne, A., Weerasooriya, S.V.R., De Silva, S.H.G., 1982. The environmental pollution of Kandy Lake: A case study from Sri Lanka. Environ. Int. 7, 343-351. https://doi.org/10.1016/0160-4120(82)90127-1
    [15]
    Dissanayake, C.B., Niwas, J.M., Weerasooriya, S.V.R., 1987. Heavy metal pollution of the mid-canal of Kandy: An environmental case study from Sri Lanka. Environ. Res. 42, 24-35. https://doi.org/10.1016/S0013-9351(87)80004-X
    [16]
    El-Sheekh, M.M., El-Naggar, A.H., Osman, M.E.H., El-Mazaly, E., 2003. Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchia perminuta. Brazilian J. Plant Physiol. 15, 159-166. http://doi.org/10.1590/S1677-04202003000300005
    [17]
    García-Meza, J.V., Barrangue, C., Admiraal, W., 2005. Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ. Toxicol. Chem. Environmental Toxicology and Chemistry 24, 573-581. https://doi.org/10.1897/04-064R.1
    [18]
    González, A.G., Fernandez-Rojo, L., Leflaive, J., Pokrovsky, O.S., Rols, J.L., 2016. Response of three biofilm-forming benthic microorganisms to Ag nanoparticles and Ag+: The diatom Nitzschia palea, the green alga Uronema confervicolum and the cyanobacteria Leptolyngbya sp. Environ. Sci. Pollut. Res. 23(21), 22136-22150. https://doi.org/10.1007/s11356-016-7259-z
    [19]
    Harland, F.M.J., Wood, S.A., Moltchanova, E., Williamson, W.M., Gaw, S., 2013. Phormidium autumnale growth and anatoxin-a production under iron and copper stress. Toxins 5, 2504-2521. https://doi.org/10.3390/toxins5122504
    [20]
    Hu, W., 2014. Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae. University of Missouri Columbia, Columbia
    [21]
    Jaroslawiecka, A., Piotrowska-Seget, Z., 2014. Lead resistance in micro-organisms. Microbiology 160, 12-25. https://doi.org/10.1099/mic.0.070284-0
    [22]
    Jayatissa, L.P., Silva, E.I.L., McElhiney, J., Lawton, L.A., 2006. Occurrence of toxigenic cyanobacterial blooms in freshwaters of Sri Lanka. Syst. Appl. Microbiol. 29, 156-164. https://doi.org/10.1016/j.syapm.2005.07.007
    [23]
    Jinadasa, K., Wijewardena, S.K.I., Zhang, D.Q., Gersberg, R.M., Kalpage, C.S., Tan, S.K., Wang, J.Y., Ng, W.J., 2012. Socio-environmental impact of water pollution on the mid-canal (Meda Ela), Sri Lanka. J. Water Resour. Prot. 4, 451. https://doi.org/10.4236/jwarp.2012.47052
    [24]
    Karman, S.B., Diah, S.Z.M., Gebeshuber, I.C., 2015. Raw materials synthesis from heavy metal industry effluents with bioremediation and phytomining: A biomimetic resource management approach. Adv. Mater. Sci. Eng. 2015, 185071. https://doi.org/10.1155/2015/185071
    [25]
    Kumar, M.S., Rajeshwari, K., Johnson, S., Thajuddin, N., Gunasekaran, M., 2011. Removal of Pb(II) by immobilized and free filaments of marine Oscillatoria sp. NTMS01 and Phormidium sp. NTMS02. Bull. Environ. Contam. Toxicol. 87, 254-259. https://doi.org/10.1007/s00128-011-0348-2
    [26]
    Kumar, D., Rai, J., Gaur, J.P., 2012. Removal of metal ions by Phormidium bigranulatum (cyanobacteria)-dominated mat in batch and continuous flow systems. Bioresour. Technol. 104, 202-207. https://doi.org/10.1016/j.biortech.2011.11.002
    [27]
    Liu, X., Pang, H., Liu, X., Li, Q., Zhang, N., Mao, L., Qiu, M., Hu, B., Yang, H., Wang, X., 2021. Orderly porous covalent organic frameworks-based materials: Superior adsorbents for pollutants removal from aqueous solutions. The Innovation 2(1), 100076. https://doi.org/10.1016/j.xinn.2021.100076
    [28]
    Liyanage, L.M.M., Lakmali, W.G.M., Athukorala, S.N.P., Jayasundera, K.B., 2020. Application of live Chlorococcum aquaticum biomass for the removal of Pb(II) from aqueous solutions. Journal of Applied Phycology 32(6), 4069-4080. https://doi.org/10.1007/s10811-020-02242-w
    [29]
    Maksoud, M.A., Sami, N.M., Hassan, H.S., Awed, A.S., 2021. Sorption characteristics of bismuth tungstate nanostructure for removal of some radionuclides from aqueous solutions. Sep. Purif. Technol. 277, 119478. https://doi.org/10.1016/j.seppur.2021.119478
    [30]
    Mejáre, M., Bulow, L., 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology 19, 67-73. https://doi.org/10.1016/S0167-7799(00)01534-1
    [31]
    Novák, Z., Harangi, S., Baranyai, E., Gonda, S., B-Beres, V., Bacsi, I., 2020. Effects of metal quantity and quality to the removal of zinc and copper by two common green microalgae (Chlorophyceae) species. Phycological Research 68(3), 227-235. https://doi.org/10.1111/pre.12422
    [32]
    Schiewer, S., Patil, S.B., 2008. Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresour. Technol. 99(6), 1896-1903. https://doi.org/10.1016/j.biortech.2007.03.060
    [33]
    Sen, S., Karn, S.K., 2019. Cyanobacteria: The eco-friendly tool for the treatment of industrial wastewater. In: Bharagava, R.N., ed., Environmental Contaminants: Ecological Implications and Management. Springer, Singapore, pp. 163-183. https://doi.org/10.1007/978-981-13-7904-8_8
    [34]
    Seneviratne, G., Zavahir, J.S., Bandara, W.M.M.S., Weerasekara, M.L.M.A.W., 2008. Fungal-bacterial biofilms: Their development for novel biotechnological applications. World J. Microbiol. Biotechnol. 24, 739-743. https://doi.org/10.1007/s11274-007-9539-8
    [35]
    Shanab, S., Essa, A., Shalaby, E., 2012. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal. Behav. 7, 392-399. https://doi.org/10.4161/psb.19173
    [36]
    Singh, N.K., Gupta, G., Upadhyay, A.K., Rai, U.N., 2019. Biological wastewater treatment for prevention of river water pollution and reuse: Perspectives and challenges. In: Singh R., Kolok A., Bartelt-Hunt S., eds., Water Conservation, Recycling and Reuse: Issues and Challenges. Springer, Singapore, pp. 81-93. https://doi.org/10.1007/978-981-13-3179-4_4
    [37]
    Souza, P.O., Ferreira, L.R., Pires, N.R., Filho, P.J.S., Duarte, F.A., Pereira, C.M., Mesko, M.F., 2012. Algae of economic importance that accumulate cadmium and lead: A review. Rev. Bras. Farmacogn. 22(4), 825-837. https://doi.org/10.1590/S0102-695X2012005000076
    [38]
    Stokes, P.M., Hutchinson, T.C., Krauter, K., 1973. Heavy-metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario. Can. J. Bot. 51, 2155-2168. https://doi.org/10.1139/b73-278
    [39]
    Travieso, L., Canizares, R.O., Borja, R., Benitez, F., Dominguez, A.R., Valiente, V., 1999. Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62, 144-151. https://doi.org/10.1007/s001289900853
    [40]
    York, P.V., Johnson, L.R., 2002. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge
    [41]
    Yu et al., 2021 Yu, S., Pang, H., Huang, S., Tang, H., Wang, S., Qiu, M., Chen, Z., Yang, H., Song, G., Fu, D., Hu, B., 2021. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 800, 149662. https://doi.org/10.1016/j.scitotenv.2021.149662
    [42]
    Zhao, Y., Song, X., Yu, L., Han, B., Li, T., Yu, X., 2019. Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1. Energy Convers. Manag. 188, 76-85. https://doi.org/10.1016/j.enconman.2019.03.041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (129) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return