Citation: | W.G. Madusha Lakmali, A.D. Sarangi N.P. Athukorala, Keerthi B. Jayasundera. 2022: Investigation of Pb(II) bioremediation potential of algae and cyanobacteria strains isolated from polluted water. Water Science and Engineering, 15(3): 237-246. doi: 10.1016/j.wse.2022.04.003 |
[1] |
Akhtar, N., Iqbal, M., Zafar, S.I., Iqbal, J., 2008. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J. Environ. Sci. 20(2), 231-239. https://doi.org/10.1016/S1001-0742(08)60036-4
|
[2] |
Al-Thani, R.F., Yasseen, B.T., 2021. Perspectives of future water sources in Qatar by phytoremediation: Biodiversity at ponds and modern approach. International Journal of Phytoremediation 23(8), 866-889. https://doi.org/10.1080/15226514.2020.1859986
|
[3] |
Alluri, H.K., Ronda, S.R., Settalluri, V.S., Bondili, J.S., Suryanarayana, V., Venkateshwar, P., 2007. Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology 6(25), 2924-2931. https://doi.org/10.5897/AJB2007.000-2461
|
[4] |
Bácsi, I., Novák, Z., Jánószky, M., B-Béres, V., Grigorszky, I., Nagy, S.A., 2015. The sensitivity of two Monoraphidium species to zinc: Their possible future role in bioremediation. Int. J. Environ. Sci. Technol. 12, 2455-2466. https://doi.org/10.1007/s13762-014-0647-3
|
[5] |
Bajguz, A., 2010. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ. Exp. Bot. 68, 175-179. https://doi.org/10.1016/j.envexpbot.2009.11.003
|
[6] |
Barros, M.U.G., Lopes, I.K.C., Carvalho, S.M.C., Neto, J.C., 2017. Impact of filamentous cyanobacteria on the water quality of two tropical reservoirs. RBRH 22, e6. https://doi.org/10.1590/2318-0331.011716072
|
[7] |
Bellinger, E.G., Sigee, D.C., 2015. Freshwater Algae: Identification, Enumeration and Use as Bioindicators. John Wiley & Sons, New York
|
[8] |
Blanco, A., Sanz, B., Llama, M.J., Serra, J.L., 1999. Biosorption of heavy metals to immobilised Phormidium laminosum biomass. J. Biotechnol. 69, 227-240. https://doi.org/10.1016/S0168-1656(99)00046-2
|
[9] |
Chekroun, K.B., Baghour, M., 2013. The role of algae in phytoremediation of heavy metals: A review. J. Mater. Environ. Sci. 4(6), 873-880
|
[10] |
Dahiya, S., Tripathi, R.M., Hegde, A.G., 2008. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. J. Hazard. Mater. 150(2), 376-386. https://doi.org/10.1016/j.jhazmat.2007.04.134
|
[11] |
Das, D., Chakraborty, S., Bhattacharjee, C., Chowdhury, R., 2016. Biosorption of lead ions (Pb2+) from simulated wastewater using residual biomass of microalgae. Desalin. Water Treat. 57, 4576-4586. https://doi.org/10.1080/19443994.2014.994105
|
[12] |
De Philippis, R., Colica, G., Micheletti, E., 2011. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Appl. Microbiol. Biotechnol. 92, 697-708. https://doi.org/10.1007/s00253-011-3601-z
|
[13] |
De-Bashan, L.E., Bashan, Y., 2010. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 101, 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043
|
[14] |
Dissanayake, C.B., Senaratne, A., Weerasooriya, S.V.R., De Silva, S.H.G., 1982. The environmental pollution of Kandy Lake: A case study from Sri Lanka. Environ. Int. 7, 343-351. https://doi.org/10.1016/0160-4120(82)90127-1
|
[15] |
Dissanayake, C.B., Niwas, J.M., Weerasooriya, S.V.R., 1987. Heavy metal pollution of the mid-canal of Kandy: An environmental case study from Sri Lanka. Environ. Res. 42, 24-35. https://doi.org/10.1016/S0013-9351(87)80004-X
|
[16] |
El-Sheekh, M.M., El-Naggar, A.H., Osman, M.E.H., El-Mazaly, E., 2003. Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchia perminuta. Brazilian J. Plant Physiol. 15, 159-166. http://doi.org/10.1590/S1677-04202003000300005
|
[17] |
García-Meza, J.V., Barrangue, C., Admiraal, W., 2005. Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ. Toxicol. Chem. Environmental Toxicology and Chemistry 24, 573-581. https://doi.org/10.1897/04-064R.1
|
[18] |
González, A.G., Fernandez-Rojo, L., Leflaive, J., Pokrovsky, O.S., Rols, J.L., 2016. Response of three biofilm-forming benthic microorganisms to Ag nanoparticles and Ag+: The diatom Nitzschia palea, the green alga Uronema confervicolum and the cyanobacteria Leptolyngbya sp. Environ. Sci. Pollut. Res. 23(21), 22136-22150. https://doi.org/10.1007/s11356-016-7259-z
|
[19] |
Harland, F.M.J., Wood, S.A., Moltchanova, E., Williamson, W.M., Gaw, S., 2013. Phormidium autumnale growth and anatoxin-a production under iron and copper stress. Toxins 5, 2504-2521. https://doi.org/10.3390/toxins5122504
|
[20] |
Hu, W., 2014. Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae. University of Missouri Columbia, Columbia
|
[21] |
Jaroslawiecka, A., Piotrowska-Seget, Z., 2014. Lead resistance in micro-organisms. Microbiology 160, 12-25. https://doi.org/10.1099/mic.0.070284-0
|
[22] |
Jayatissa, L.P., Silva, E.I.L., McElhiney, J., Lawton, L.A., 2006. Occurrence of toxigenic cyanobacterial blooms in freshwaters of Sri Lanka. Syst. Appl. Microbiol. 29, 156-164. https://doi.org/10.1016/j.syapm.2005.07.007
|
[23] |
Jinadasa, K., Wijewardena, S.K.I., Zhang, D.Q., Gersberg, R.M., Kalpage, C.S., Tan, S.K., Wang, J.Y., Ng, W.J., 2012. Socio-environmental impact of water pollution on the mid-canal (Meda Ela), Sri Lanka. J. Water Resour. Prot. 4, 451. https://doi.org/10.4236/jwarp.2012.47052
|
[24] |
Karman, S.B., Diah, S.Z.M., Gebeshuber, I.C., 2015. Raw materials synthesis from heavy metal industry effluents with bioremediation and phytomining: A biomimetic resource management approach. Adv. Mater. Sci. Eng. 2015, 185071. https://doi.org/10.1155/2015/185071
|
[25] |
Kumar, M.S., Rajeshwari, K., Johnson, S., Thajuddin, N., Gunasekaran, M., 2011. Removal of Pb(II) by immobilized and free filaments of marine Oscillatoria sp. NTMS01 and Phormidium sp. NTMS02. Bull. Environ. Contam. Toxicol. 87, 254-259. https://doi.org/10.1007/s00128-011-0348-2
|
[26] |
Kumar, D., Rai, J., Gaur, J.P., 2012. Removal of metal ions by Phormidium bigranulatum (cyanobacteria)-dominated mat in batch and continuous flow systems. Bioresour. Technol. 104, 202-207. https://doi.org/10.1016/j.biortech.2011.11.002
|
[27] |
Liu, X., Pang, H., Liu, X., Li, Q., Zhang, N., Mao, L., Qiu, M., Hu, B., Yang, H., Wang, X., 2021. Orderly porous covalent organic frameworks-based materials: Superior adsorbents for pollutants removal from aqueous solutions. The Innovation 2(1), 100076. https://doi.org/10.1016/j.xinn.2021.100076
|
[28] |
Liyanage, L.M.M., Lakmali, W.G.M., Athukorala, S.N.P., Jayasundera, K.B., 2020. Application of live Chlorococcum aquaticum biomass for the removal of Pb(II) from aqueous solutions. Journal of Applied Phycology 32(6), 4069-4080. https://doi.org/10.1007/s10811-020-02242-w
|
[29] |
Maksoud, M.A., Sami, N.M., Hassan, H.S., Awed, A.S., 2021. Sorption characteristics of bismuth tungstate nanostructure for removal of some radionuclides from aqueous solutions. Sep. Purif. Technol. 277, 119478. https://doi.org/10.1016/j.seppur.2021.119478
|
[30] |
Mejáre, M., Bulow, L., 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology 19, 67-73. https://doi.org/10.1016/S0167-7799(00)01534-1
|
[31] |
Novák, Z., Harangi, S., Baranyai, E., Gonda, S., B-Beres, V., Bacsi, I., 2020. Effects of metal quantity and quality to the removal of zinc and copper by two common green microalgae (Chlorophyceae) species. Phycological Research 68(3), 227-235. https://doi.org/10.1111/pre.12422
|
[32] |
Schiewer, S., Patil, S.B., 2008. Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresour. Technol. 99(6), 1896-1903. https://doi.org/10.1016/j.biortech.2007.03.060
|
[33] |
Sen, S., Karn, S.K., 2019. Cyanobacteria: The eco-friendly tool for the treatment of industrial wastewater. In: Bharagava, R.N., ed., Environmental Contaminants: Ecological Implications and Management. Springer, Singapore, pp. 163-183. https://doi.org/10.1007/978-981-13-7904-8_8
|
[34] |
Seneviratne, G., Zavahir, J.S., Bandara, W.M.M.S., Weerasekara, M.L.M.A.W., 2008. Fungal-bacterial biofilms: Their development for novel biotechnological applications. World J. Microbiol. Biotechnol. 24, 739-743. https://doi.org/10.1007/s11274-007-9539-8
|
[35] |
Shanab, S., Essa, A., Shalaby, E., 2012. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal. Behav. 7, 392-399. https://doi.org/10.4161/psb.19173
|
[36] |
Singh, N.K., Gupta, G., Upadhyay, A.K., Rai, U.N., 2019. Biological wastewater treatment for prevention of river water pollution and reuse: Perspectives and challenges. In: Singh R., Kolok A., Bartelt-Hunt S., eds., Water Conservation, Recycling and Reuse: Issues and Challenges. Springer, Singapore, pp. 81-93. https://doi.org/10.1007/978-981-13-3179-4_4
|
[37] |
Souza, P.O., Ferreira, L.R., Pires, N.R., Filho, P.J.S., Duarte, F.A., Pereira, C.M., Mesko, M.F., 2012. Algae of economic importance that accumulate cadmium and lead: A review. Rev. Bras. Farmacogn. 22(4), 825-837. https://doi.org/10.1590/S0102-695X2012005000076
|
[38] |
Stokes, P.M., Hutchinson, T.C., Krauter, K., 1973. Heavy-metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario. Can. J. Bot. 51, 2155-2168. https://doi.org/10.1139/b73-278
|
[39] |
Travieso, L., Canizares, R.O., Borja, R., Benitez, F., Dominguez, A.R., Valiente, V., 1999. Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62, 144-151. https://doi.org/10.1007/s001289900853
|
[40] |
York, P.V., Johnson, L.R., 2002. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge
|
[41] |
Yu et al., 2021 Yu, S., Pang, H., Huang, S., Tang, H., Wang, S., Qiu, M., Chen, Z., Yang, H., Song, G., Fu, D., Hu, B., 2021. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 800, 149662. https://doi.org/10.1016/j.scitotenv.2021.149662
|
[42] |
Zhao, Y., Song, X., Yu, L., Han, B., Li, T., Yu, X., 2019. Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1. Energy Convers. Manag. 188, 76-85. https://doi.org/10.1016/j.enconman.2019.03.041
|