Volume 16 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
Shan-hu Jiang, Lin-yong Wei, Li-liang Ren, Lin-qi Zhang, Meng-hao Wang, Hao Cui. 2023: Evaluation of IMERG, TMPA, ERA5, and CPC precipitation products over Chinese mainland: Spatiotemporal patterns and extremes. Water Science and Engineering, 16(1): 45-56. doi: 10.1016/j.wse.2022.05.001
Citation: Shan-hu Jiang, Lin-yong Wei, Li-liang Ren, Lin-qi Zhang, Meng-hao Wang, Hao Cui. 2023: Evaluation of IMERG, TMPA, ERA5, and CPC precipitation products over Chinese mainland: Spatiotemporal patterns and extremes. Water Science and Engineering, 16(1): 45-56. doi: 10.1016/j.wse.2022.05.001

Evaluation of IMERG, TMPA, ERA5, and CPC precipitation products over Chinese mainland: Spatiotemporal patterns and extremes

doi: 10.1016/j.wse.2022.05.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 51979069), the Fundamental Research Funds for the Central Universities (Grant No. B200204029), and the National Natural Science Foundation of Jiangsu Province, China (Grant No. BK20211202).

  • Received Date: 2022-01-15
  • Accepted Date: 2022-05-11
  • Rev Recd Date: 2022-03-27
  • A comprehensive assessment of representative satellite-retrieved (Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA)), reanalysis-based (fifth generation of atmospheric reanalysis by the European Centre for Medium Range Weather Forecasts (ERA5)), and gauge-estimated (Climate Prediction Center (CPC)) precipitation products was conducted using the data from 807 meteorological stations across Chinese mainland from 2001 to 2017. Error statistical metrics, precipitation distribution functions, and extreme precipitation indices were used to evaluate the quality of the four precipitation products in terms of multi-timescale accuracy and extreme precipitation estimation. When the timescale increased from daily to seasonal scales, the accuracy of the four precipitation products first increased and then decreased, and all products performed best on the monthly timescale. Their accuracy ranking in descending order was CPC, IMERG, TMPA, and ERA5 on the daily timescale and IMERG, CPC, TMPA, and ERA5 on the monthly and seasonal timescales. IMERG was generally superior to its predecessor TMPA on the three timescales. ERA5 exhibited large statistical errors. CPC provided stable estimated values. For extreme precipitation estimation, the quality of IMERG was relatively consistent with that of TMPA in terms of precipitation distribution and extreme metrics, and IMERG exhibited a significant advantage in estimating moderate and heavy precipitation. In contrast, ERA5 and CPC exhibited poor performance with large systematic underestimation biases. The findings of this study provide insight into the performance of the latest IMERG product compared with the widely used TMPA, ERA5, and CPC datasets, and points to possible directions for improvement of multi-source precipitation data fusion algorithms in order to better serve hydrological applications.

     

  • loading
  • Amjad, M., Yilmaz, M.T., Yucel, I., Yilmaz, K.K., 2020. Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography. J. Hydrol. 584, 124707. https://doi.org/10.1016/j.jhydrol.2020.124707.
    Chen, S., Hong, Y., Cao, Q., Gourley, J.J., Kirstetter, P., Yong, B., Tian, Y., Zhang, Z., Shen, Y., Hu, J., et al., 2013. Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. J. Geophys. Res. Atmos. 118, 13060-13074.https://doi.org/10.1002/2013JD019964.
    Copernicus Climate Change Service (C3S), 2017. ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS) July 2019. ECMWF, Reading.
    Donat, M.G., Lowry, A.L., Alexander, L.V., O'Gorman, P.A., Maher, N., 2016.More extreme precipitation in the world's dry and wet regions. Nat. Clim.Change 6(5), 508-513. https://doi.org/10.1038/NCLIMATE2941.
    Fang, J., Yang, W., Luan, Y., Du, J., Lin, A., Zhao, L., 2019. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 223, 24-38. https://doi.org/10.1016/j.atmosres.2019.03.001.
    Herbach, H., Dee, D.P., 2016. ECMWF Newsletter Spring 2016. ECMWF, Reading.Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A.A., Kummerow, C.D., Kojima, M., Oki, R., Nakamura, K., Iguchi, T., 2014. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 95, 701-722.https://doi.org/10.1175/BAMS-D-13-00164.1.
    Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P.B., Stocker, E.F., 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38-55.https://doi.org/10.1175/JHM560.1.
    Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E.J., Sorooshian, S., Tan, J., Xie, P., 2019. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA/GSFC, Greenbelt.
    Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., Wang, J., 2021a. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese mainland. J. Hydrol. 595, 125660. https://doi.org/10.1016/j.jhydrol.2020.125660.
    Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F., Ma, M., 2012.Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol. 452-453, 213-225. https://doi.org/10.1016/j.jhydrol.2012.05.055.
    Jiang, S., Zhou, M., Ren, L., Chen, X., Zhang, P., 2016. Evaluation of latest TMPA and CMORPH satellite precipitation products over Yellow River Basin. Water Sci. Eng. 9(2), 87-96. https://doi.org/10.1016/j.wse.2016.06.002.
    Jiang, S., Ren, L., Xu, C., Yong, B., Yuan, F., Liu, Y., Yang, X., Zeng, X., 2018. Statistical and hydrological evaluation of the latest Integrated MultisatellitE Retrievals for GPM (IMERG) over a midlatitude humid basin in South China. Atmos. Res. 214, 418-429. https://doi.org/10.1016/j.atmosres.2018.08.021.
    Jiang, S., Wei, L., Ren, L., Xu, C., Zhong, F., Wang, M., Zhang, L., Yuan, F., Liu, Y., 2021b. Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over Chinese mainland. Atmos. Res. 247, 105141. https://doi.org/10.1016/j.atmosres.2020.105141.
    Lu, X., Tang, G., Wang, X., Liu, Y., Jia, L., Xie, G., Li, S., Zhang, Y., 2019.Correcting GPM IMERG precipitation data over the Tianshan mountains in China. J. Hydrol. 575, 1239-1252. https://doi.org/10.1016/j.jhydrol.2019.06.019.
    Ma, Q., Li, Y., Feng, H., Yu, Q., Zou, Y., Liu, F., Pulatov, B., 2021. Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmos. Res. 249, 105304. https://doi.org/10.1016/j.atmosres.2020.105304.
    Pradhan, R.K., Markonis, Y., Godoy, M.R., Villalba-Pradas, A., Andreadis, K.M., Nikolopoulos, E.I., Papalexiou, S.M., Rahim, A., Tapiador, F.J., Hanel, M., 2022. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 268, 112754. https://doi.org/10.1016/j.rse.2021.112754.
    Prakash, S., Mitra, A.K., AghaKouchak, A., Liu, Z., Norouzi, H., Pai, D.S., 2018. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 556, 865-876.https://doi.org/10.1016/j.jhydrol.2016.01.029.
    Sahoo, A.K., Sheffield, J., Pan, M., Wood, E.F., 2015. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis(TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 159, 181-193. https://doi.org/10.1016/j.rse.2014.11.032.
    Satg e, F., Defrance, D., Sultan, B., Bonnet, M., Seyler, F., Rouch e, N., Pierron, F., Paturel, J., 2020. Evaluation of 23 gridded precipitation datasets across west Africa. J. Hydrol. 581, 124412. https://doi.org/10.1016/j.jhydrol.2019.124412.
    Shen, Y., Xiong, A., Wang, Y., Xie, P., 2010. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. Atmos. 115, D02114. https://doi.org/10.1029/2009JD012097.
    Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., Hsu, K., 2018. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 56(1), 79-107. https://doi.org/10.1002/ 2017RG000574.
    Tang, G., Behrangi, A., Long, D., Li, C., Hong, Y., 2018. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol. 559, 294-306. https://doi.org/10.1016/j.jhydrol.2018.02.057.
    Tot e, C., Patricio, D., Boogaard, H., van der Wijngaart, R., Tarnavsky, E., Funk, C., 2015. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 7, 1758-1776. https://doi.org/10.3390/rs70201758.
    Wang, Q., Xia, J., She, D., Zhang, X., Liu, J., Zhang, Y., 2021. Assessment of four latest long-term satellite-based precipitation products in capturing the extreme precipitation and streamflow across a humid region of southern China. Atmos. Res. 257, 105554. https://doi.org/10.1016/j.atmosres.2021.105554.
    Wang, X., Ding, Y., Zhao, C., Wang, J., 2019. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 218, 347-363. https://doi.org/10.1016/j.atmosres.2018.12.011.
    Wei, L., Jiang, S., Ren, L., 2020a. Evaluation and comparison of three longterm gauge-based precipitation products for drought monitoring over Chinese mainland from 1961 to 2016. Nat. Hazards 104(2), 1371-1387.https://doi.org/10.1007/s11069-020-04222-2.
    Wei, L., Jiang, S., Ren, L., Zhang, L., Wang, M., Duan, Z., 2020b. Preliminary utility of the retrospective IMERG precipitation product for large-scale drought monitoring over Mainland China. Remote Sens. 12(18), 2993.https://doi.org/10.3390/rs12182993.
    Wei, L., Jiang, S., Ren, L., Wang, M., Zhang, L., Liu, Y., Yuan, F., Yang, X., 2021. Evaluation of seventeen satellite-, reanalysis-, and gauge-based precipitation products for drought monitoring across Chinese mainland.Atmos. Res. 263, 105813. https://doi.org/10.1016/j.atmosres.2021.105813.
    Worqlul, A.W., Maathuis, B., Adem, A.A., Demissie, S.S., Langan, S., Steenhuis, T.S., 2014. Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrol. Earth Syst. Sci. 18(12), 4871-4881. https://doi.org/10.5194/hess-18-4871-2014.
    Xie, P., Yatagai, A., Chen, M., Hayasaka, T., Fukushima, Y., Liu, C., Yang, S., 2007. A gauge-based analysis of daily precipitation over East Asia. J.Hydrometeorol. 8(3), 607-626. https://doi.org/10.1175/JHM583.1.
    Xu, C., 2021. Issues influencing accuracy of hydrological modeling in a changing environment. Water Sci. Eng. 14(2), 167-170. https://doi.org/10.1016/j.wse.2021.06.005.
    Yin, J., Guo, S., Gu, L., Zeng, Z., Liu, D., Chen, J., Shen, Y., Xu, C., 2021.Blending multi-satellite, atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling. J. Hydrol. 593, 125878.https://doi.org/10.1016/j.jhydrol.2020.125878.
    Yu, C., Hu, D., Liu, M., Wang, S., Di, Y., 2020. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmos. Res. 241, 104952. https://doi.org/10.1016/j.atmosres.2020.104952.
    Zhang, L., Ren, D., Nan, Z., Wang, W., Zhao, Y., Zhao, Y., Ma, Q., Wu, X., 2020. Interpolated or satellite-based precipitation? Implications for hydrological modeling in a meso-scale mountainous watershed on the QinghaieTibet Plateau. J. Hydrol. 583, 124629. https://doi.org/10.1016/j.jhydrol.2020.124629.
    Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., Trewin, B., Zwiers, F.W., 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data.Wiley Interdiscip. Rev. Clim. Change 2, 851-870. https://doi.org/10.1002/wcc.147.
    Zhao, H., Yang, B., Yang, S., Huang, Y., Dong, G., Bai, J., Wang, Z., 2018.Systematical estimation of GPM-based global satellite mapping of precipitation products over China. Atmos. Res. 201, 206-217. https://doi.org/10.1016/j.atmosres.2017.11.005.
    Zhou, Z., Guo, B., Xing, W., Zhou, J., Xu, F., Xu, Y., 2020. Comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over Chinese mainland. Atmos. Res. 246, 105132. https://doi.org/10.1016/j.atmosres.2020.105132.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (429) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return