Citation: | Poh Lin Lau, Antoine P. Trzcinski. 2022: A review of modified and hybrid anaerobic baffled reactors for industrial wastewater treatment. Water Science and Engineering, 15(3): 247-256. doi: 10.1016/j.wse.2022.06.004 |
[1] |
Ahamed, A., Chen, C.L., Rajagopal, R., Wu, D., Mao, Y., Ho, I.J.R., Lim, J.W., Wang, J.Y., 2015. Multi-phased anaerobic baffled reactor treating food waste. Bioresour. Technol. 182, 239-244. https://doi.org/10.1016/j.biortech.2015.01.117
|
[2] |
Ahmad, I., Abdullah, N., Chelliapan, S., Krishnan, S., Koji, I., Yuzir, A., 2021. Effect of organic loading rate on the performance of modified anaerobic baffled reactor treating landfill leachate containing heavy metals. Mater. Today Proc. 46, 1913-1921. https://doi.org/10.1016/j.matpr.2021.02.027
|
[3] |
Andalib, M., Hafez, H., Elbeshbishy, E., Nakhla, G., Zhu, J., 2012. Treatment of thin stillage in a high-rate anaerobic fluidized bed bioreactor (AFBR). Bioresour. Technol. 121, 411-418. https://doi.org/10.1016/j.biortech.2012.07.008
|
[4] |
Aoi, Y., Miyoshi, T., Okamoto, T., Tsuneda, S., Hirata, A., Kitayama, A., Nagamune, T., 2000. Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization. J. Biosci. Bioeng. 90, 234-240. https://doi.org/10.1016/S1389-1723(00)80075-4
|
[5] |
Arceivala, S.J., AsolekarS.R, 2006. Wastewater Treatment for Pollution Control and Reuse. Tata McGraw-Hill, New Delhi
|
[6] |
Arvin, A., Hosseini, M., Amin, M.M., Najafpour Darzi, G., Ghasemi, Y., 2019. A comparative study of the anaerobic baffled reactor and an integrated anaerobic baffled reactor and microbial electrolysis cell for treatment of petrochemical wastewater. Biochem. Eng. J. 144, 157-165. https://doi.org/10.1016/j.bej.2019.01.021
|
[7] |
Bachmann, A., Beard, V.L., McCarty, P.L., 1983. Comparision of fixed-film reactors with a modified sludge blanket reactor. Pollut. Technol. Rev.10, 384-402
|
[8] |
Bachmann, A., Beard, V.L., McCarty, P.L., 1985. Performance characteristics of the anaerobic baffled reactor. Water Res. 19, 99-106. https://doi.org/10.1016/0043-1354(85)90330-6
|
[9] |
Boopathy, R., Tilche, A., 1991. Anaerobic digestion of high strength molasses wastewater using hybrid anaerobic baffled reactor. Water Res. 25, 785-790. https://doi.org/10.1016/0043-1354(91)90157-L
|
[10] |
Bull, M.A., Sterritt, R.M., Lester, J.N., 1982. The treatment of wastewaters from the meat industry: A review. Environ. Technol. 3, 117-126. https://doi.org/10.1080/09593338209384107
|
[11] |
Burgos, J.S., Ramirez, C., Tenorio, R., Sastre, I., Bullido, M.J., 2002. Influence of reagents formulation on real-time PCR parameters. Mol. Cell. Probes 16, 257-260. https://doi.org/10.1006/mcpr.2002.0419
|
[12] |
Bwapwa, J., 2012. Treatment efficiency of an anaerobic baffled reactor treating low biodegradable and complex particulate wastewater (blackwater) in an ABR membrane bioreactor unit (MBR-ABR). Int. J. Environ. Pollut Remed. 1, 51-58. https://doi.org/10.11159/ijepr.2012.008
|
[13] |
Cao, W., Mehrvar, M., 2011. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chem. Eng. Res. Des. 89, 1136-1143. https://doi.org/10.1016/j.cherd.2010.12.001
|
[14] |
Chang, F.Y., Lin, C.Y., 2004. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int. J. Hydrogen Energy 29, 33-39. https://doi.org/10.1016/S0360-3199(03)00082-X
|
[15] |
Chang, M., Wang, Y., Zhong, R., Zhang, K., Pan, Y., Lyu, L., Zhu, T., 2020. Performance of HABR + MSABP system for the treatment of dairy wastewater and analyses of microbial community structure and low excess sludge production. Bioresour. Technol. 311, 123576. https://doi.org/10.1016/j.biortech.2020.123576
|
[16] |
Chen, C.C., Chen, H.P., Wu, J.H., Lin, C., 2008. Fermentative hydrogen production at high sulfate concentration. Int. J. Hydrogen Energy 33, 1573-1578. https://doi.org/10.1016/j.ijhydene.2007.09.042
|
[17] |
Cheng, H., Li, Y., Hu, Y., Guo, G., Cong, M., Xiao, B., Li, Y.Y., 2021. Bioenergy recovery from methanogenic co-digestion of food waste and sewage sludge by a high-solid anaerobic membrane bioreactor (AnMBR): Mass balance and energy potential. Bioresour. Technol. 326, 124754. https://doi.org/10.1016/j.biortech.2021.124754
|
[18] |
Chorukova, E., Simeonov, I., 2015. A simple mathematical model of the anaerobic digestion of wasted fruits and vegetables in mesophilic conditions. Int. J. Bioautomation 19(S1), S69-S80
|
[19] |
Conley, L.M., Dick, R.I., Lion, L.W., 1991. An assessment of the root zone method of wastewater treatment. Res. J. Water Pollut. Control Fed. 239-247
|
[20] |
de Haan, C., Steinfeld, H., Blackburn, H.D., 1996. Livestock and the Environment. European Commission Directorate General for Development, Brussels
|
[21] |
Elreedy, A., Tawfik, A., Enitan, A., Kumari, S., Bux, F., 2016. Pathways of 3-biofules (hydrogen, ethanol and methane) production from petrochemical industry wastewater via anaerobic packed bed baffled reactor inoculated with mixed culture bacteria. Energy Convers. Manag. 122, 119-130. https://doi.org/10.1016/j.enconman.2016.05.067
|
[22] |
Faisal, M., Unno, H., 2001. Kinetic analysis of palm oil mill wastewater treatment by a modified anaerobic baffled reactor. Biochem. Eng. J. 9, 25-31. https://doi.org/10.1016/S1369-703X(01)00122-X
|
[23] |
Farhadian, M., Duchez, D., Vachelard, C., Larroche, C., 2008. Monoaromatics removal from polluted water through bioreactors-a review. Water Res. 42, 325-1341. https://doi.org/10.1016/j.watres.2007.10.021
|
[24] |
Gulhane, M., Pandit, P., Khardenavis, A., Singh, D., Purohit, H., 2017. Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor. Renew. Energy 101, 59-66. https://doi.org/10.1016/j.renene.2016.08.021
|
[25] |
Hahn, M.J., Figueroa, L.A., 2015. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater. Water Res. 87, 494-502. https://doi.org/10.1016/j.watres.2015.09.027
|
[26] |
Hamza, R.A., Iorhemen, O.T., Tay, J.H., 2016. Advances in biological systems for the treatment of high-strength wastewater. J. Water Proc. Eng. 10, 128-142. https://doi.org/10.1016/j.jwpe.2016.02.008
|
[27] |
Horn, M.A., Matthies, C., Kusel, K., Schramm, A., Drake, H.L., 2003. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl. Environ. Microbiol. 69, 74-83
|
[28] |
Hu, S., Yang, F., Liu, S., Yu, L., 2009. The development of a novel hybrid aerating membrane-anaerobic baffled reactor for the simultaneous nitrogen and organic carbon removal from wastewater. Water Res. 43, 381-388. https://doi.org/10.1016/j.watres.2008.10.041
|
[29] |
Hu, Y., Cheng, H., Tao, S., 2017. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ. Int. 107, 111-130. https://doi.org/10.1016/j.envint.2017.07.003
|
[30] |
Ju, L., Augustine, E., Born, J., Holm-nielsen, J.B., 2015. Hydrogen production using an anaerobic baffled reactor - mass balances for pathway analysis and gas composition profiles. Int. J. Hydrogen Energy 40(36), 12154-12161. https://doi.org/10.1016/j.ijhydene.2015.07.068
|
[31] |
Klein, D., 2002. Quantification using real-time PCR technology: Applications and limitations. Trends Mol. Med. 8, 257-260. https://doi.org/10.1016/s1471-4914(02)02355-9
|
[32] |
Kluber, H.D., Conrad, R., 1998. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii. FEMS Microbiol. Ecol. 25, 331-339. https://doi.org/10.1111/j.1574-6941.1998.tb00484.x
|
[33] |
Kubota, K., Igarashi, K., Yamada, M., Takemura, Y., Li, Y.Y., Harada, H., 2021. Niche differentiation of phenol-degrading microorganisms in UASB granular sludge as revealed by fluorescence in situ hybridization. Engineering 9, 61-66. https://doi.org/10.1016/j.eng.2021.05.012
|
[34] |
Kuscu, O.S., Sponza, D.T., 2006. Treatment efficiencies of a sequential anaerobic baffled reactor (ABR)/completely stirred tank reactor (CSTR) system at increasing p-nitrophenol and COD loading rates. Process Biochem. 41, 1484-1492. https://doi.org/10.1016/j.procbio.2006.02.004
|
[35] |
Lee, H., Shoda, M., 2008. Removal of COD and color from livestock wastewater by the Fenton method. J. Hazard Mater. 153, 1314-1319. https://doi.org/10.1016/j.jhazmat.2007.09.097
|
[36] |
Li, C., Wang, R., Yang, X., Zhou, M., Pan, X., Cai, G., Zhang, Y., Zhu, G., 2021. Deeper investigation on methane generation from synthetic wastewater containing oxytetracycline in a scale up acidic anaerobic baffled reactor. Bioresour. Technol. 333, 125156. https://doi.org/10.1016/j.biortech.2021.125156
|
[37] |
Li, J., Li, B., Zhu, G., Ren, N., Bo, L., He, J., 2007. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Internatiional Journal of Hydrogen Energy 32(15), 3274-3283. https://doi.org/10.1016/j.ijhydene.2007.04.023
|
[38] |
Li, J., Shi, E., Antwi, P., Leu, S.Y., 2016a. Modeling the performance of an anaerobic baffled reactor with the variation of hydraulic retention time. Bioresour. Technol. 214, 477-486. https://doi.org/10.1016/j.biortech.2016.04.128
|
[39] |
Li, S., Nan, J., Gao, F., 2016b. Hydraulic characteristics and performance modeling of a modified anaerobic baffled reactor (MABR). Chem. Eng. J. 284, 85-92. https://doi.org/10.1016/j.cej.2015.08.129
|
[40] |
Lin, C.Y., Lay, C.H., Chen, C.C., 2017. High-strength wastewater treatment using anaerobic processes, In: Lee, D., Jegatheesan, V., Ngo, H.H., Hallenbeck, P.C., Pandey A. (eds.), Current Developments in Biotechnology and Bioengineering: Biological Treatment of Industrial Effluents. Elsevier, Amsterdam, pp. 321-357. https://doi.org/10.1016/B978-0-444-63665-2.00013-8
|
[41] |
Lin, Y., Yin, J., Wang, J., Tian, W., 2012. Performance and microbial community in hybrid anaerobic baffled reactor-constructed wetland for nitrobenzene wastewater. Bioresour. Technol. 118, 128-135. https://doi.org/10.1016/j.biortech.2012.05.056
|
[42] |
Madigan, T., M., John, M., Parker, J., 1997. Brock Biology of Microorganisms. Prentice-Hall, Upper Saddle River
|
[43] |
Majumder, P.S., Gupta, S.K., 2007. Removal of chlorophenols in sequential anaerobic-aerobic reactors. Bioresour. Technol. 98, 118-129. https://doi.org/10.1016/j.biortech.2005.11.009
|
[44] |
Malina, J., Joseph, F., Pohland, F.G., 2017. Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes. CRC Press, Boca Raton
|
[45] |
Mendoza, L., Carballa, M., Sitorus, B., Pieters, J., Verstraete, W., 2009. Technical and economic feasibility of gradual concentric chambers reactor for sewage treatment in developing countries. Electron. J. Biotechnol. 12, 7-8
|
[46] |
Movahedyan, H., Assadi, A., Parvaresh, A., 2007. Performance evaluation of an anaerobic baffled reactor treating wheat flour starch industry wastewater. J. Environ. Heal. Sci. Eng. 4, 77-84
|
[47] |
Mulkerrins, D.D.A.C.E., Dobson, A.D.W., Colleran, E., 2004. Parameters affecting biological phosphate removal from wastewaters. Environ. Int. 30, 249-259. https://doi.org/10.1016/S0160-4120(03)00177-6
|
[48] |
Nasr, F.A., Doma, H.S., Nassar, H.F., 2009. Treatment of domestic wastewater using an anaerobic baffled reactor followed by a duckweed pond for agricultural purposes. Environmentalist 29, 270-279. https://doi.org/10.1007/s10669-008-9188-y
|
[49] |
Okabe, S., Satoh, H., Itoh, T., Watanabe, Y., 1999. Microbial ecology of sulfate-reducing bacteria in wastewater biofilms analyzed by microelectrodes and fish (fluorescent in situ hybridization) technique. Water Sci. Technol. 39, 41-47. https://doi.org/10.1016/S0273-1223(99)00148-1
|
[50] |
Owaes, M., Gaur, R.Z., Hasan, M.N., Gani, K.M., Kumari, S., Bux, F., Khan, A.A., Kazmi, A.A., 2020. Performance assessment of aerobic granulation for the post treatment of anaerobic effluents. Environ. Technol. Innovat. 17, 100588. https://doi.org/10.1016/j.eti.2019.100588
|
[51] |
Ozdemir, S., Cirik, K., Akman, D., Sahinkaya, E., Cinar, O., 2013. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresour. Technol. 146, 135-143. https://doi.org/10.1016/j.biortech.2013.07.066
|
[52] |
Park, J.B.K., Craggs, R.J., Shilton, A.N., 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102, 35-42. https://doi.org/10.1016/j.biortech.2010.06.158
|
[53] |
Pavlekovic, M., Schmid, M.C., Schmider-Poignee, N., Spring, S., Pilhofer, M., Gaul, T., Fiandaca, M., Loffler, F.E., Jetten, M., Schleifer, K.H., 2009. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment. J. Microbiol. Methods 78, 119-126. https://doi.org/10.1016/j.mimet.2009.04.003
|
[54] |
Pirsaheb, M., Rostamifar, M., Mansouri, A.M., Zinatizadeh, A.A.L., Sharafi, K., 2015. Performance of an anaerobic baffled reactor (ABR) treating high strength baker's yeast manufacturing wastewater. J. Taiwan Inst. Chem. Eng. 47, 137-148. https://doi.org/10.1016/j.jtice.2014.09.029
|
[55] |
Pirsaheb, M., Hossaini, H., Amini, J., 2019. Evaluation of a zeolite/anaerobic buffled reactor hybrid system for treatment of low bio-degradable effluents. Mater. Sci. Eng. C 104, 109943
|
[56] |
Plumb, J.J., Bell, J., Stuckey, D.C., 2001. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl. Environ. Microbiol. 67, 3226-3235. https://doi.org/10.1128/AEM.67.7.3226-3235.2001
|
[57] |
Putra, A.A., Watari, T., Maki, S., Hatamoto, M., Yamaguchi, T., 2020. Anaerobic baffled reactor to treat fishmeal wastewater with high organic content. Environ. Technol. Innovat. 17, 100586. https://doi.org/10.1016/j.eti.2019.100586
|
[58] |
Qi, Z., Xiang, G., Xiong, D., 2019. Performance evaluation of pilot-scale hybrid anaerobic baffled reactor (HABR) to process dyeing wastewater based on grey relational analysis. Appl. Sci. 9, 1974. https://doi.org/10.3390/app9101974
|
[59] |
Saiki, Y., Iwabuchi, C., Katami, A., Kitagawa, Y., 2002. Microbial analyses by fluorescence in situ hybridization of well-settled granular sludge in brewery wastewater treatment plants. J. Biosci. Bioeng. 93, 601-606. https://doi.org/10.1016/S1389-1723(02)80244-4
|
[60] |
Sayedin, F., Kermanshahi-pour, A., He, S., 2018. Anaerobic digestion of thin stillage of corn ethanol plant in a novel anaerobic baffled reactor. Waste Manag. 78, 541-552. https://doi.org/10.1016/j.wasman.2018.06.015
|
[61] |
Skillicorn, P., Spira, W., Journey, W., 1993. Duckweed Aquaculture: A New Aquatic Farming System for Developing Countries. World Bank, Washington D. C
|
[62] |
Smith, A.L., Stadler, L.B., Cao, L., Love, N.G., Raskin, L., Skerlos, S.J., 2015. Navigating wastewater energy recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ. Sci. Technol. 48, 5972-5981. https://doi.org/10.1021/es5006169
|
[63] |
Smith, M.D., Moelyowati, I., 2001. Duckweed based wastewater treatment (DWWT): Design guidelines for hot climate. Water Sci. Technol. 43, 291-299. https://doi.org/10.1029/2000WR900288
|
[64] |
Suaisom, P., Pholchan, P., Aggarangsi, P., 2019. Holistic determination of suitable conditions for biogas production from Pennisetum purpureum x Pennisetum americanum liquor in anaerobic baffled reactor. J. Environ. Manag. 247, 730-737. https://doi.org/10.1016/j.jenvman.2019.06.103
|
[65] |
Thanwised, P., Wirojanagud, W., Reungsang, A., 2012. Effect of hydraulic retention time on hydrogen production and chemical oxygen demand removal from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR). Int. J. Hydrogen Energy 37, 15503-15510. https://doi.org/10.1016/j.ijhydene.2012.02.068
|
[66] |
Tritt, W.P., Schuchardt, F., 1992. Materials flow and possibilities of treating liquid and solid wastes from slaughterhouses in Germany. A review. Bioresour. Technol. 41, 235-245. https://doi.org/https://doi.org/10.1016/0960-8524(92)90008-L
|
[67] |
Trzcinski, A.P., Ofoegbu, N., Stuckey, D.C., 2011. Post-treatment of the permeate of a submerged anaerobic membrane bioreactor (SAMBR) treating landfill leachate. J. Env. Sci. Health Part A 46, 1539-1548. https://doi.org/10.1080/10934529.2011.609402
|
[68] |
Vossoughi, M., Shakeri, M., Alemzadeh, I., 2003. Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO4 ratios. Chem. Eng. Process. Process Intensif. 42, 811-816. https://doi.org/https://doi.org/10.1016/S0255-2701(02)00107-1
|
[69] |
Xu, S., Jiang, C., Ma, S., Wu, S., Bai, Z., Zhuang, G., Zhuang, X., 2017. The performance and archaeal community shifts in a modified anaerobic baffled reactor treating sweet potato starch wastewater at ambient temperatures. Sci. Rep. 7, 14734. https://doi.org/10.1038/s41598-017-15421-6
|
[70] |
Yee, R.A., Alessi, D.S., Ashbolt, N.J., Hao, W., Konhauser, K., Liu, Y., 2019. Nutrient recovery from source-diverted blackwater: Optimization for enhanced phosphorus recovery and reduced co-precipitation. J. Clean. Prod. 235, 417-425. https://doi.org/10.1016/j.jclepro.2019.06.191
|
[71] |
Zhang, J., Wei, Y., Xiao, W., Zhou, Z., Yan, X., 2011. Performance and spatial community succession of an anaerobic baffled reactor treating acetone-butanol-ethanol fermentation wastewater. Bioresour. Technol. 102, 7407-7414. https://doi.org/10.1016/j.biortech.2011.05.035
|
[72] |
Zhang, X., Wei, Y., Li, M., Deng, S., Wu, J., Zhang, Y., Xiao, H., 2014. Emergy evaluation of an integrated livestock wastewater treatment system. Resour. Conserv. Recycl. 92, 95-107. https://doi.org/10.1016/j.resconrec.2014.09.003
|
[73] |
Zuo, Z., Wu, S., Zhang, W., Dong, R., 2013. Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresour. Technol. 146, 556-561. https://doi.org/10.1016/j.biortech.2013.07.128
|
[74] |
Zwain, H.M., Hassan, S.R., Zaman, N.Q., Aziz, H.A., Dahlan, I., 2013. The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. J. Environ. Chem. Eng. 1, 61-64. https://doi.org/10.1016/j.jece.2013.03.007
|