Volume 15 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Sasirot Khamkure, Victoria Bustos-Terrones, Nancy Jakelin Benitez-Avila, María Fernanda Cabello-Lugo, Prócoro Gamero-Melo, Sofía Esperanza Garrido-Hoyos, Juan Marcos Esparza-Schulz. 2022: Effect of Fe3O4 nanoparticles on magnetic xerogel composites for enhanced removal of fluoride and arsenic from aqueous solution. Water Science and Engineering, 15(4): 305-317. doi: 10.1016/j.wse.2022.07.001
Citation: Sasirot Khamkure, Victoria Bustos-Terrones, Nancy Jakelin Benitez-Avila, María Fernanda Cabello-Lugo, Prócoro Gamero-Melo, Sofía Esperanza Garrido-Hoyos, Juan Marcos Esparza-Schulz. 2022: Effect of Fe3O4 nanoparticles on magnetic xerogel composites for enhanced removal of fluoride and arsenic from aqueous solution. Water Science and Engineering, 15(4): 305-317. doi: 10.1016/j.wse.2022.07.001

Effect of Fe3O4 nanoparticles on magnetic xerogel composites for enhanced removal of fluoride and arsenic from aqueous solution

doi: 10.1016/j.wse.2022.07.001

This work was supported by the Mexican Institute of Water Technology (Grant No. DP2101.1) and the CatedraseCONACyT Program of the National Council of Science and Technology (Project No. 159).

  • Received Date: 2022-01-19
  • Accepted Date: 2022-07-11
  • Rev Recd Date: 2022-06-29
  • Available Online: 2022-11-04
  • Fe3O4 magnetic xerogel composites were prepared by polycondensation of resorcinol (R)-formaldehyde reaction via a sol-gel process in an aqueous solution through varying the molar ratio of Fe3O4 nanoparticles (MNPs), catalyst (C), and water (W) content. MNPs were obtained by co-precipitation (MC), oxidation of iron salts (MO), or solvothermal synthesis (MS). Both MNPs and magnetic xerogels were examined regarding the performance of arsenic and fluoride removal in a batch system. The MC-based MNPs had higher adsorption capacities for both fluoride (202.9 mg/g) and arsenic (3.2 mg/g) than other MNPs in optimum conditions. The X-ray diffraction, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy confirmed that Fe was composed into the polymeric matrix of magnetic xerogels that contained 0.59%-4.42% of Fe with a molar ratio of MNPs (M) to R between 0.01 and 0.10. With low R/C and optimum M/R ratios, an increase in the surface area of magnetic xerogels affected the fluoride and arsenic adsorption capacities. The magnetic xerogel composites with the MCbased MNPs prepared at a fixed R/C ratio (100) and at different R/W (0.05-0.06) and M/R (0.07-0.10) ratios had a high arsenic removal efficiency of 100% at an As(V) concentration of 0.1 mg/L and pH of 3.0. The maximum adsorption capacities of magnetic xerogels were approximately five times higher than those of the xerogels without MNP composites. Therefore, Fe3O4 nanoparticles enhanced the adsorption of arsenate and fluoride. The variations of alkaline catalyst and water content significantly affected the resulting properties of textural and surface chemistry of magnetic xerogel composites.


  • loading
  • Al-Muhtaseb, S.A., Ritter, J.A., 2003. Preparation and properties of resorcinolformaldehyde organic and carbon gels. Adv. Mater. 15(2), 101-114.https://doi.org/10.1002/adma.200390020.
    Attia, S.M., Abdelfatah, M.S., Mossad, M.M., 2017. Conduction mechanism and dielectric properties of pure and composite resorcinol formaldehyde aerogels doped with silver. J. Phys. Conf. Ser. 869, 012035. https://doi.org/ 10.1088/1742-6596/869/1/012035.
    Bangari, R.S., Yadav, V.K., Singh, J.K., Sinha, N., 2020. Fe3O4-functionalized boron nitride nanosheets as novel adsorbents for removal of arsenic(III) from contaminated water. ACS Omega 5(18), 10301-10314. https://doi.org/10.1021/acsomega.9b04295.
    Chowdhury, S.R., Yanful, E.K., 2011. Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ. J. 25(3), 429-437. https://doi.org/10.1111/j.1747-6593.2010.00242.x.
    Embaby, M.A., Abdel Moniem, S.M., Fathy, N.A., El-kady, A.A., 2021.Nanocarbon hybrid for simultaneous removal of arsenic, iron and manganese ions from aqueous solutions. Heliyon 7, e08218. https://doi.org/10.1016/j.heliyon.2021.e08218.
    Ganapathe, L.S., Mohamed, M.A., Yunus, R.M., Berhanuddin, D.D., 2020.Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry 6(4), 68. https://doi.org/10.3390/magnetochemistry6040068.
    Ghosh, S., Debsarkar, A., Dutta, A., 2019. Technology alternatives for decontamination of arsenic-rich groundwater: A critical review. Environ.Technol. Innov. 13, 277-303. https://doi.org/10.1016/j.eti.2018.12.003.
    Hanbali, M., Holail, H., Hammud, H., 2014. Remediation of lead by pretreated red algae: Adsorption isotherm, kinetic, column modeling and simulation studies. Green Chem. Lett. Rev. 7(4), 342-358. https://doi.org/10.1080/17518253.2014.955062.
    Hernández-Flores, H., Pariona, N., Herrera-Trejo, M., Hdz-García, H.M., MtzEnriquez, A.I., 2018. Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal. J. Mol. Struct. 1171, 9-16. https://doi.org/10.1016/j.molstruc.2018.05.078.
    Huang, L., Wu, H., van der Kuijp, T.J., 2015. The health effects of exposure to arsenic-contaminated drinking water: A review by global geographical distribution. Int. J. Environ. Health Res. 25(4), 432-452. https://doi.org/10.1080/09603123.2014.958139.
    Jayarathna, L., Bandara, A., Ng, W.J., Weerasooriya, R., 2015. Fluoride adsorption on g-Fe2O3 nanoparticles. J. Environ. Heal. Sci. Eng. 13, 1-10.https://doi.org/10.1186/s40201-015-0210-2.
    Khamkure, S., Treesatayapun, C., Garrido-Hoyos, S.E., Gamero-Melo, P., Reyes-Rosas, A., 2020. Prediction of the pH effect on arsenic (V) removal by varying catalyst of magnetic xerogel monoliths based on FREN model.Water Supply 20(7), 2747-2761. https://doi.org/10.2166/ws.2020.168.
    Khamkure, S., Garrido-Hoyos, S.E., Gamero-Melo, P., Reyes-Rosas, A., 2021.Synthesis and characterization of magnetic xerogel monolith as an adsorbent for As(V) removal from groundwater. Processes 9(2), 386.https://doi.org/10.3390/pr9020386.
    Liu, W.J., Jiang, H., Tian, K., Ding, Y.W., Yu, H.Q., 2013. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Environ. Sci. Technol. 47(16), 9397-9403. https://doi.org/10.1021/es401286p.
    López-Luna, J., Ramírez-Montes, L.E., Martinez-Vargas, S., Martínez, A.I., Mijangos-Ricardez, O.F., González-Chávez, M.C.A., CarrilloGonzález, R., Solís-Domínguez, F.A., Cuevas-Díaz, M.C., VázquezHipólito, V., 2019. Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Appl.Sci. 1, 950. https://doi.org/10.1007/s42452-019-0977-3.
    Luzny, R., Ignasiak, M., Walendziewski, J., Stolarski, M., 2014. Heavy metal ions removal from aqueous solutions using carbon aerogels and xerogels.Chemik 68, 544-553.
    Malega, F., Indrayana, I.P.T., Suharyadi, E., 2018. Synthesis and characterization of the microstructure and functional group bond of Fe3O4 nanoparticles from natural iron sand in Tobelo North Halmahera. J. Ilm. Pendidik. Fis. AlBiruni 7(2), 129-138. https://doi.org/10.24042/jipfalbiruni.v7i2.2913.
    Morales-Torres, S., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., CarrascoMarín, F., 2012. Structural characterization of carbon xerogels: From film to monolith. Microporous Mesoporous Mater. 153, 24-29. https://doi.org/ 10.1016/j.micromeso.2011.12.022.
    Oyedoh, E.A., Albadarin, A.B., Walker, G.M., Mirzaeian, M., Ahmad, M.N.M., 2013. Preparation of controlled porosity resorcinol formaldehyde xerogels for adsorption applications. Chem. Eng. Trans. 32, 1651-1656. https://doi.org/10.3303/CET1332276.
    Pariona, N., Martínez, A.I., Hernandez-Flores, H., Clark-Tapia, R., 2017. Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Sci. Total Environ. 575, 869-875. https://doi.org/ 10.1016/j.scitotenv.2016.09.128.
    Pekala, R.W., 1989. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221-3227. https://doi.org/10.1007/BF01139044.
    Prostredný, M., Abduljalil, M., Mulheran, P., Fletcher, A., 2018. Process variable optimization in the manufacture of resorcinoleformaldehyde gel materials. Gels 4, 36. https://doi.org/10.3390/gels4020036.
    Rajput, S., Pittman, C.U., Mohan, D., 2016. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium(Cr6+) removal from water. J. Colloid Interface Sci. 468, 334-346. https://doi.org/10.1016/j.jcis.2015.12.008.
    Ramos-Guivar, J.A., Flores-Cano, D.A., Passamani, E.C., 2021. Differentiating nanomaghemite and nanomagnetite and discussing their importance in arsenic and lead removal from contaminated effluents: A critical review.Nanomaterials 11(9), 2310. https://doi.org/10.3390/nano11092310.
    Singh, N.B., Nagpal, G., Agrawal, S., Rachna, 2018. Water purification by using adsorbents: A review. Environ. Technol. Innov. 11, 187-240. https://doi.org/10.1016/j.eti.2018.05.006.
    Song, H.J., You, S., Jia, X.H., Yang, J., 2015. MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram. Int. 41(10), 13896-13902. https://doi.org/10.1016/j.ceramint.2015.08.023.
    Verma, N.K., Khare, P., Verma, N., 2015. Synthesis of iron-doped resorcinol formaldehyde-based aerogels for the removal of Cr(VI) from water. Green Process. Synth. 4, 37-46. https://doi.org/10.1515/gps-2014-0072.
    Wang, M., Ni, Y., Liu, A., 2017. Fe3O4@resorcinol-formaldehyde resin/Cu2O composite microstructures: Solution-phase construction, magnetic performance, and applications in antibacterial and catalytic Fields. ACS Omega 2(4), 1505-1512. https://doi.org/10.1021/acsomega.7b00064.
    Wickenheisser, M., Herbst, A., Tannert, R., Milow, B., Janiak, C., 2015. Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe,Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications. Microporous Mesoporous Mater. 215, 143-153. https://doi.org/10.1016/j.micromeso.2015.05.017.
    Yahya, M.D., Obayomi, K.S., Abdulkadir, M.B., Iyaka, Y.A., Olugbenga, A.G., 2020. Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Sci. Eng. 13(3), 202-213. https://doi.org/10.1016/j.wse.2020.09.007.
    Zhang, C., Li, Y., Wang, T.J., Jiang, Y., Fok, J., 2017. Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Appl. Surf. Sci. 425, 272-281. https://doi.org/10.1016/j.apsusc.2017.06.159.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint