Volume 15 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Jing-jing Zhang, Juan Chen, Chao Wang, Pei-fang Wang, Han Gao, Yu Hu. 2022: Distribution characteristics and controlling factors of typical antibiotics and antibiotic resistance genes in river networks in western area of Wangyu River, China. Water Science and Engineering, 15(4): 318-327. doi: 10.1016/j.wse.2022.08.001
Citation: Jing-jing Zhang, Juan Chen, Chao Wang, Pei-fang Wang, Han Gao, Yu Hu. 2022: Distribution characteristics and controlling factors of typical antibiotics and antibiotic resistance genes in river networks in western area of Wangyu River, China. Water Science and Engineering, 15(4): 318-327. doi: 10.1016/j.wse.2022.08.001

Distribution characteristics and controlling factors of typical antibiotics and antibiotic resistance genes in river networks in western area of Wangyu River, China

doi: 10.1016/j.wse.2022.08.001

This work was supported by the National Natural Science Foundation of China (Grants No. 52022028, 92047201, and 92047303) and the National Water Pollution Control and Treatment Science and Technology Major Project (Grant No. 2017ZX07204003).

  • Received Date: 2021-11-20
  • Accepted Date: 2022-08-07
  • Rev Recd Date: 2022-06-14
  • Available Online: 2022-11-04
  • Antibiotics and antibiotic resistance genes (ARGs) pose health risks in aquatic environments because of their persistence and mobility. River networks can provide a perfect opportunity for exploring the occurrence and enrichment of ARGs and antibiotics in freshwater environments. On this basis, the abundances of four types of antibiotics (sulfonamides, quinolones, tetracyclines, and macrolides) and 13 ARGs (sulⅠ, sulⅡ, tetA, tetB, tetO, tetW, qnrA, qnrS, qnrD, ermB, ermF, ermC, and ereA) were measured in the river networks of the west bank of the Wangyu River in China. The spatial distribution and temporal variation of these antibiotics and ARGs were characterized, and their controlling factors were analyzed. All four types of antibiotics were detected with high frequencies between 41% and 100%. Quinolone antibiotics exhibited the highest average concentration (286.53 ng/L). The concentrations of quinolones, tetracyclines, and macrolides were significantly higher in the winter than in the summer, whereas the concentration of sulfonamides was higher in wet periods than in dry periods. Of the 13 ARGs, sulI was the most abundant (1.28 ×105 copies per milliliter), followed by sulII and tetO (5.41×104 and 4.45×104 copies per milliliter, respectively). The canonical correspondence analysis showed that environmental factors, including dissolved oxygen, water temperature, total nitrogen, pH, and total phosphorus, had significant effects on the abundance of ARGs. sulⅠ, sulⅡ, tetA, and tetB were significantly correlated with 16S ribosomal RNA sequences, indicating that the bacterioplankton community might affect the distribution of ARGs. The correlation heat map analysis showed that the spread of ARGs was influenced by specific bacterial groups, such as Acidobacteria and Cyanobacteria, indicating that these bacterioplankton may be the hosts of environmental ARGs.


  • loading
  • Cai, J., Ye, Z.L., Ye, C., Ye, X., Chen, S., 2020. Struvite crystallization induced the discrepant transports of antibiotics and antibiotic resistance genes in phosphorus recovery from swine wastewater. Environ. Pollut. 266, 115361. https://doi.org/10.1016/j.envpol.2020.115361.
    Chen, J., Wang, P.F., Wang, C., Liu, J.J., Gao, H., Wang, X., 2018. Spatial distribution and diversity of organohalide-respiring bacteria and their relationships with polybrominated diphenyl ether concentration in Taihu Lake sediments. Environ. Pollut. 232, 200-211. https://doi.org/10.1016/j.envpol.2017.08.124.
    Chen, Y.H., Cui, K.P., Huang, Q.L., Guo, Z., Huang, Y.S., Yu, K.F., He, Y.L., 2020. Comprehensive insights into the occurrence, distribution, risk assessment and indicator screening of antibiotics in a large drinking reservoir system. Sci. Total Environ. 716, 137060. https://doi.org/10.1016/j.scitotenv.2020.137060.
    Cycon, M., Mrozik, A., Piotrowska-Seget, Z., 2019. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front. Microbiol. 10, 338. https://doi.org/10.3389/fmicb.2019.00338.
    Fang, H.S., Zhang, Q., Nie, X.P., Chen, B.W., Xiao, Y.D., Zhou, Q.B., Liao, W., Liang, X.M., 2017. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland. Chemosphere 173, 99-106. https://doi.org/10.1016/j.chemosphere.2017.01.027.
    Graham, D.W., Olivares-Rieumont, S., Knapp, C.W., Lima, L., Werner, D., Bowen, E., 2011. Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environ. Sci. Technol. 45(2), 418-424. https://doi.org/ 10.1021/es102473z.
    Guo, X.P., Liu, X.R., Niu, Z.S., Lu, D.P., Zhao, S., Sun, X.L., Wu, J.Y., Chen, Y.R., Tou, F.Y., Hou, L.J., et al., 2018. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environ. Pollut. 242, 576-584. https://doi.org/10.1016/j.envpol.2018.06.099.
    Han, M.Z., Dsouza, M., Zhou, C.Y., Li, H.J., Zhang, J.Q., Chen, C.Y., Yao, Q., Zhong, C.F., Zhou, H., Gilbert, J.A., et al., 2019. Agricultural risk factors influence microbial ecology in Honghu Lake. Dev. Reprod. Biol. 17(1), 76-90. https://doi.org/10.1016/j.gpb.2018.04.008.
    He, Y., Li, K.X., Wang, J.W., Wang, W., Fan, P.C., Chen, H.H., Wang, J.J., 2021. Microbial community structure of waste water treatment plants in different seasons. Environ. Sci. 42(3), 1488-1495. https://doi.org/ 10.13227/j.hjkx.202007015 (in Chinese).
    Hossain, A., Nakamichi, S., Habibullah-Al-Mamun, M., Tani, K., Masunaga, S., Matsuda, H., 2017. Occurrence, distribution, ecological and resistance risks of antibiotics in surface water of finfish and shellfish aquaculture in Bangladesh. Chemosphere 188, 329-336. https://doi.org/ 10.1016/j.chemosphere.2017.08.152.
    Hu, X.G., Zhou, Q.X., Luo, Y., 2010. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 158(9), 2992-2998. https://doi.org/10.1016/j.envpol.2010.05.023.
    Hu, Y.F., Yang, X., Li, J., Lv, N., Liu, F., 2016. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl.Environ. Microbiol. 82(22), 6672-6681. https://doi.org/10.1128/AEM.01802-16.
    Huang, Y.H., Liu, Y., Du, P.P., Zeng, L.J., Mo, C.H., Li, Y.W., Lu, H., Cai, Q.Y., 2019. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. Sci. Total Environ. 670, 170-180.https://doi.org/10.1016/j.scitotenv.2019.03.168.
    Jia, S., Zhang, X.X., Miao, Y., Zhao, Y., Ye, L., Li, B., Zhang, T., 2017. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. Water Res. 124, 259-268. https://doi.org/10.1016/j.watres.2017.07.061.
    Jiang, Y., Li, M., Guo, C., An, D., Xu, J., Zhang, Y., Xi, B., 2014. Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wangyang River) in north China. Chemosphere 112, 267-274. https://doi.org/10.1016/j.chemosphere.2014.04.075.
    Lei, X.S., 2014. Distribution and Pollution Levels of Antibiotics from Typical Lakes in Xinjiang. M.S. Dissertation. Shihezi University, Shihezi (in Chinese).Li, M.M., Ray, P., Knowlton, K.F., Pruden, A., Xia, K., Teets, C., Du, P., 2020.Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Sci. Total Environ. 710, 136310. https://doi.org/10.1016/j.scitotenv.2019.136310.
    Li, S., Zhang, R.J., Hu, J.R., Shi, W.Z., Kuang, Y.Z., Guo, X.Y., Sun, W.L., 2019. Occurrence and removal of antibiotics and antibiotic resistance genes in natural and constructed riverine wetlands in Beijing, China. Sci. Total Environ. 664, 546-553. https://doi.org/10.1016/j.scitotenv.2019.02.043.
    Liang, X.M., Guan, F.L., Chen, B.W., Luo, P.Y., Guo, C.F., Wu, G.Q., Ye, Y., Zhou, Q.B., Fang, H.S., 2020. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China. Ecotoxicol. Environ. Saf. 196, 110543. https://doi.org/10.1016/j.ecoenv.2020.110543.
    Liu, L., Su, J.Q., Guo, Y., Wilkinson, D.M., Liu, Z., Zhu, Y.G., Yang, J., 2018a. Large-scale biogeographical patterns of bacterial antibiotic resistome in the waterbodies of China. Environ. Int. 117, 292-299. https://doi.org/10.1016/j.envint.2018.05.023.
    Liu, X.H., Lu, S.Y., Guo, W., Xi, B.D., Wang, W.L., 2018b. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total Environ. 627, 1195-1208. https://doi.org/10.1016/j.scitotenv.2018.01.271.
    Luo, Y., Mao, D., Rysz, M., Zhang, H., Xu, L., J, J., Alvarez, P., 2010. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ.
    Sci. Technol. 44(19), 7220-7225. https://doi.org/10.1021/es100233w.
    Ma, Z., Wu, H.H., Zhang, K.S., Xu, X.K., Wang, C., Zhu, W.J., Wu, W.X., 2018. Long-term low dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in swine wastewater treatment.Chem. Eng. J. 334, 630-637. https://doi.org/10.1016/j.cej.2017.10.051.
    Proia, L., von Schiller, D., Sanchez-Melsio, A., Sabater, S., Borrego, C.M., Rodriguez-Mozaz, S., Balcazar, J.L., 2016. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environ. Pollut. 210, 121-128. https://doi.org/10.1016/j.envpol.2015.11.035.
    Qin, Y., Zhang, X., Wang, Z.W., Zheng, W., 2021. Seasonal variation of microbial community structure in the middle section of the Three Gorges Reservoir. J. Hydroecol. 42(6), 16-23. https://doi.org/10.15928/j.1674-3075.201911300298 (in Chinese).
    Szekeres, E., Baricz, A., Chiriac, C.M., Farkas, A., Opris, O., Soran, M.L., Andrei, A.S., Rudi, K., Balc azar, J.L., Dragos, N., et al., 2017. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 225, 304-315. https://doi.org/10.1016/j.envpol.2017.01.054.
    Wang, F., Stedtfeld, R.D., Kim, O.S., Chai, B., Yang, L., Stedtfeld, T.M., Hong, S.G., Kim, D., Lim, H.S., Hashsham, S.A., et al., 2016. Influence of soil characteristics and proximity to Antarctic research stations on abundance of antibiotic resistance genes in soils. Environ. Sci. Technol. 50(23), 12621-12629. https://doi.org/10.1021/acs.est.6b02863.
    Wang, G.G., Zhou, S.H., Han, X.K., Zhang, L.L., Ding, S.Y., Li, Y., Zhang, D.J., Zarin, K., 2020a. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing City, Southwest China. J. Hazard Mater. 389, 122110. https://doi.org/ 10.1016/j.jhazmat.2020.122110.
    Wang, S., Ma, X., Liu, Y., Yi, X., Du, G., Li, J., 2020b. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in fullscale membrane bioreactor wastewater treatment plants. Bioresour. Technol. 302, 122825. https://doi.org/10.1016/j.biortech.2020.122825.
    Wang, Z., Han, M., Li, E., Liu, X., Wei, H., Yang, C., Lu, S., Ning, K., 2020c.Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: Their links with microbial communities, antibiotics, and water quality. J. Hazard Mater. 393, 122426. https://doi.org/10.1016/j.jhazmat.2020.122426.
    Wu, D., Su, Y.L., Xi, H., Chen, X.Y., Xie, B., 2019. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 158, 11-21. https://doi.org/ 10.1016/j.watres.2019.03.010.
    Xu, J., Zhang, Y., Zhou, C.B., Guo, C.S., Wang, D.M., Du, P., Luo, Y., Wan, J., Meng, W., 2014. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Sci.Total Environ. 497, 267-273. https://doi.org/10.1016/j.scitotenv.2014. 07.114.
    Xu, Z.A., Li, T., Bi, J., Wang, C., 2018. Spatiotemporal heterogeneity of antibiotic pollution and ecological risk assessment in Taihu Lake Basin, China. Sci. Total Environ. 643, 12-20. https://doi.org/10.1016/j.scitotenv.2018.06.175.
    Yan, M.T., Xu, C., Huang, Y.M., Nie, H.Y., Wang, J., 2018a. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China. Sci. Total Environ. 631-632, 840-848. https://doi.org/10.1016/j.scitotenv.2018.03.085.
    Yan, Y., Deng, Y., Ji, M., Xu, X.G., Zhang, L.M., Wang, G.X., 2020. Antibiotic pollution and risk assessment under different cultivation modes in aquaculture ponds of the Taihu Lake Basin, China. Mar. Freshwater Res. 71(10), 1234-1240. https://doi.org/10.1071/mf19224.
    Yan, Z.H., Yang, H.H., Dong, H.K., Ma, B.N., Sun, H.W., Pan, T., Jiang, R.R., Zhou, R.R., Shen, J., Liu, J.C., et al., 2018b. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion. Environ. Pollut. 239, 223-232. https://doi.org/10.1016/j.envpol.2018.04.023.
    Yang, J., Wang, H.X., Wu, Y.F., Ren, L.F., Zhang, X.F., He, Y.L., 2019a.Occurrence, distribution and risk assessment of typical antibiotics in the aquatic environment of Suzhou City. Ecol. Environ. Sci. 28, 359-368 (in Chinese).
    Yang, Y.Y., Song, W.J., Lin, H., Wang, W.B., Du, L.N., Xing, W., 2018.Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ. Int. 116, 60-73. https://doi.org/10.1016/j.envint.2018.04.011.
    Yang, Y.Y., Liu, G.H., Ye, C., Liu, W.Z., 2019b. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the QinghaieTibetan Plateau. J.Hazard Mater. 361, 283-293. https://doi.org/10.1016/j.jhazmat.2018. 09.002.
    Zhang, L.L., Shen, L.N., Qin, S., Cui, J.S., Liu, Y., 2020. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted noeffect concentrations (PNECs) and ecological risks by three methods. Environ. Pollut. 256, 113458. https://doi.org/10.1016/j.envpol.2019.113458.
    Zhao, B., Xu, J.M., Zhang, G.D., Lu, S.Y., Liu, X.H., Li, L.X., Li, M., 2021.Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysismultiple linear regression model. Chemosphere 262, 127741. https://doi.org/10.1016/j.chemosphere.2020.127741.
    Zhou, L.J., Han, P., Yu, Y., Wang, B., Men, Y., Wagner, M., Wu, Q.L., 2019.Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. Water Res. 159, 444-453. https://doi.org/10.1016/j.watres.2019.05.031.
    Zhu, Y.G., Zhao, Y., Li, B., Huang, C.L., Zhang, S.Y., Yu, S., Chen, Y.S., Zhang, T., Gillings, M.R., Su, J.Q., 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270. https://doi.org/10.1038/nmicrobiol.2016.270.
    Zou, H.Y., He, L.Y., Gao, F.Z., Zhang, M., Chen, S., Wu, D.L., Liu, Y.S., He, L.X., Bai, H., Ying, G.G., 2021. Antibiotic resistance genes in surface water and groundwater from mining affected environments. Sci.Total Environ. 772, 145516. https://doi.org/10.1016/j.scitotenv.2021. 145516.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (20) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint