Volume 15 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
David A. Chin. 2022: Surf-zone dynamics derived from basin-scale experiments. Water Science and Engineering, 15(4): 273-284. doi: 10.1016/j.wse.2022.08.003
Citation: David A. Chin. 2022: Surf-zone dynamics derived from basin-scale experiments. Water Science and Engineering, 15(4): 273-284. doi: 10.1016/j.wse.2022.08.003

Surf-zone dynamics derived from basin-scale experiments

doi: 10.1016/j.wse.2022.08.003
More Information
  • Corresponding author:

    David A. Chin, E-mail: dchin@miami.edu

  • Received Date: 2022-04-07
  • Accepted Date: 2022-08-10
  • Rev Recd Date: 2022-07-24
  • Available Online: 2022-11-04
  • Surf-zone hydrodynamics forced by oblique wave shoaling and breaking on beach slopes were investigated. The results showed that in wavebasin experiments with incident angles in the range of 15°-30°, wave breaking was initiated at a breaker coefficient of around 0.67, which was significantly less than that predicted from empirical relations based on normally incident waves for a given beach slope and deep-water wave steepness. The measurements also showed that subsequent saturated breaking occurred at a breaker coefficient of around 0.47 that was independent of beach slope in the range of 1:10 to 1:100. This result is likely applicable to both oblique and normally incident waves. It is shown that the measured wave heights and longshore velocity profiles in wave-basin studies can be reasonably well predicted by theory with proper adjustments to the process parameters. Best-match formulations were identified for quantifying bottom friction, eddy viscosity, and energy loss due to surface rollers.

     

  • loading
  • Battjes, J., 1974. Surf similarity. In: Proceedings of the 14th International Conference on Coastal Engineering. American Society of Civil Engineers, New York, pp. 466-480. https://doi.org/10.9753/icce.v14.26.
    Brebner, A., Kamphuis, J., 1963. Model Tests on the Relationship between Deep-Water Wave Characteristics and Longshore Currents. C.E. Research Report No. 31. Queens University, Kingston. https://doi.org/10.9753/icce.v9.11.
    Camenen, B., Larson, M., 2007. Predictive formulas for breaker depth index and breaker type. J. Coast. Res. 23(4), 1028-1041. https://doi.org/10.2307/4496114.
    Dally, W., Dean, R., Dalrymple, R., 1985. Wave height variation across beaches of arbitrary profile. J. Geophys. Res. Oceans 90(C6), 11917-11927.https://doi.org/10.1029/jc090ic06p11917.
    Deigaard, R., 1993. A note on the three-dimensional shear stress distribution in a surf zone. Coast. Eng. 20(1-2), 157-171. https://doi.org/10.1016/0378-3839(93)90059-H.
    Eagleson, P., 1956. Properties of shoaling waves by theory and experiment.Trans. Am. Geophys. Union 37, 565-572. https://doi.org/10.1029/TR037i005p00565.
    Galvin, C.J., Eagleson, P.S., 1964. Experimental Study of Longshore Currents on a Plane Beach. Technical Report No. 63. Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge.
    Goda, Y., 1970. A synthesis of breaker indices. Trans. Jpn. Soc. Civ. Eng. 2(2), 227-230. https://doi.org/10.2208/jscej1969.1970.180_39.
    Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, H., Hasselmann, D., Kruseman, P., et al., 1973.Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergäanzungsheft Dtsch. Hydrogr. Z.Reihe A 8(12), 1-95.
    Horikawa, K., Kuo, C., 1966. A study on wave transformation inside surf zone.In: Proceedings of the 16th Coastal Engineering Conference, vol. 1.American Society of Civil Engineers, New York, pp. 217-233. https://doi.org/10.9753/icce.v10.14.
    Komar, P., 1998. Beach Processes and Sedimentation, second ed. PrenticeHall, Upper Saddle River.
    Kweon, H.M., Goda, Y., 1997. A parametric model for random wave deformation by breaking on arbitrary beach profiles. In: Proceedings of the 25th International Conference on Coastal Engineering. American Society of Civil Engineers, Reston, pp. 261-274. https://doi.org/10.1061/9780784402429.
    Larson, M., Kraus, N., 1991. Numerical model of longshore current for bar and trough beaches. J. Waterw. Port Coast. Ocean Eng. 117(4), 326-347.https://doi.org/10.1061/(ASCE)0733-950X(1991)117:4(326).
    Lee, K.H., Cho, Y.H., 2021. Simple breaker index formula using linear model.J. Mar. Sci. Eng. 9(7), 731. https://doi.org/10.3390/jmse9070731.
    Longuet-Higgins, M., 1970. Longshore currents generated by obliquely incident sea waves: 1. J. Geophys. Res. 75(33), 6778-6789. https://doi.org/ 10.1029/JC075i033p06778.
    Nielsen, P., 1983. Analytical determination of nearshore wave height variation due to refraction shoaling and friction. Coast. Eng. 7(3), 233-251. https://doi.org/10.1016/0378-3839(83)90019-4.
    Ostendorf, D., Madsen, O., 1979. An Analysis of Longshore Currents and Associated Sediment Transport in the Surf Zone. Technical Report No. 241. Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge.
    Ozkan-Haller, H., Kirby, J., 1999. Nonlinear evolution of shear instabilities of the longshore current: A comparison of observations and computations. J. Geophys. Res. Oceans 104(C11), 25953-25984. https://doi.org/10.1029/ 1999JC900104.
    Postacchini, M., Brocchini, M., 2014. A wave-by-wave analysis for the evaluation of the breaking-wave celerity. Appl. Ocean Res. 46, 15-27. https://doi.org/10.1016/j.apor.2014.01.005.
    Putnam, J., Munk, W., Traylor, M., 1949. The prediction of longshore currents.Trans. Am. Geophys. Union 30, 337-345. https://doi.org/10.1029/TR030I003P00337.
    Rattanapitikon, W., Shibayama, T., 2000. Verification and modification of breaker height formulas. Coast. Eng. J. 42(4), 389-406. https://doi.org/10.1142/S0578563400000195.
    Rienecker, M., Fenton, J., 1981. A Fourier approximation method for steady water waves. J. Fluid Mech. 104, 119-137. https://doi.org/10.1017/S0022112081002851.
    Ruessink, B., Miles, J., Feddersen, F., Guza, R., Elgar, S., 2001. Modeling the alongshore current on barred beaches. J. Geophys. Res. 106, 22451-22463. https://doi.org/10.1029/2000JC000766.
    Saville, T., 1950. Model study of sand transport along an infinitely long straight beach. Trans. Am. Geophys. Union 31, 555-565. https://doi.org/10.1029/TR031i004p00555.
    Shuto, N., 1974. Nonlinear long waves in a channel of varied section. Coast.Eng. Jpn. 17, 1-12. https://doi.org/10.1080/05785634.1974.11924178.
    Sun, T., Tao, J., 2003. Numerical modeling and experimental verification of pollutant transport under waves in the nearshore zone. Acta Oceanol. Sin. 25(3), 104-112. https://doi.org/10.1007/s11769-003-0089-1.
    Sun, T., Tao, J., 2006. Numerical simulation of pollutant transport acted by wave for a shallow water sea bay. Int. J. Numer. Methods Fluid. 51, 469-487. https://doi.org/10.1002/fld.1116.
    Tajima, Y., Madsen, O.S., 2006. Modeling near-shore waves, surface rollers, and undertow velocity profiles. J. Waterw. Port Coast. Ocean Eng. 132(6), 429-438. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(429).
    Thornton, E., Guza, R., 1982. Energy saturation and phase speeds measured on a natural beach. J. Geophys. Res. 87(C12), 9499-9508. https://doi.org/10.1029/JC087iC12p09499.
    Thornton, E., Guza, R., 1986. Surf zone longshore currents and random waves:Field data and models. J. Phys. Oceanogr. 16, 1165-1178. https://doi.org/10.1175/1520-0485(1986)016%3C1165:SZLCAR%3-2.0.CO;2.
    van Rijn, L., Wijnberg, K., 1996. One-dimensional modelling of individual waves and wave-induced longshore currents in the surf zone. Coast. Eng. 28(1-4), 121-145. https://doi.org/10.1016/0378-3839(96)00014-2.
    Visser, P., 1982. The Proper Longshore Current in a Wave Basin. Technical Report No. 82-1. Department of Civil Engineering, Delft University of Technology, Delft.
    Visser, P., 1991. Laboratory measurements of uniform longshore currents.Coast. Eng. 15, 563-593. https://doi.org/10.1016/0378-3839(91)90028-F.
    Wen, S., Yu, Z., 1984. Theories and Calculation Principle for Ocean Waves.Science Press, Beijing (in Chinese).
    Yan, S., Zou, Z., Shen, L., Wang, Y., 2021. Calculation model for multiple breaking waves and wave-induced currents on very gentle beaches. J. Waterw. Port Coast. Ocean Eng. 147(5), 04021017. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000643.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (304) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return