Citation: | Xiang Zhao, Wei-hua Peng, Kai Chen, Xin-yi Qiu, Lin-hua Sun. 2022: Potential hydraulic connectivity of coal mine aquifers based on statistical analysis of hydrogeochemistry. Water Science and Engineering, 15(4): 285-293. doi: 10.1016/j.wse.2022.08.004 |
Ameh, E.G., 2019. Geochemistry and multivariate statistical evaluation of major oxides, trace and rare earth elements in coal occurrences and deposits around Kogi east, Northern Anambra Basin, Nigeria. Int. J.Coal Sci. Technol. 6(2), 260-273. https://doi.org/10.1007/s40789-019-0247-4.
|
Armengol, S., Manzano, M., Bea, S.A., Martinez, S., 2017. Identifying and quantifying geochemical and mixing processes in the MatanzaeRiachuelo Aquifer System, Argentina. Sci. Total Environ. 599, 1417-1432. https://doi.org/10.1016/j.scitotenv.2017.05.046.
|
Belkhiri, L., Mouni, L., Tiri, A., 2012. Watererock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environ.Geochem. Health 34, 1-13. https://doi.org/10.1007/s10653-011-9376-4.
|
Chae, G.T., Yun, S.T., Kim, K., Mayer, B., 2006. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: Watererock interaction and hydrologic mixing. J. Hydrol. 321(1-4), 326-343. https://doi.org/10.1016/j.jhydrol.2005.08.006.
|
Chen, S., Gui, H.R., 2017. Hydrogeochemical characteristics of groundwater in the coal-bearing aquifer of the Wugou coal mine, northern Anhui Province, China. Appl. Water Sci. 7(4), 1903-1910. https://doi.org/10.1007/s13201-015-0365-0.
|
Chen, Y., Zhu, S.Y., Xiao, S.J., 2019. Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts. Nat. Hazards 99(2), 689-704. https://doi.org/10.1007/s11069-019-03767-1.
|
Cloutier, V., Lefebvre, R., Therrien, R., Savard, M.M., 2008. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 353(3), 294-313. https://doi.org/10.1016/j.jhydrol.2008.02.015.
|
Dinka, M.O., Loiskandl, W., Ndambuki, J.M., 2015. Hydrochemical characterization of various surface water and groundwater resources available in Matahara areas, Fantalle Woreda of Oromiya region. J. Hydrol.: Reg. Stud. 3, 444-456. https://doi.org/10.1016/j.ejrh.2015.02.007.
|
Feng, F., Jia, Y.F., Yang, Y., Huan, H., Lian, X.Y., Xu, X.J., Xia, F., Han, X., Jiang, Y.H., 2020. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China. Environ. Sci. Pollut. Res. 27(28), 34840-34861. https://doi.org/10.1007/s11356-020-09784-z.
|
Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science 170, 1080-1090. https://doi.org/10.1126/science.170.3962.1088.
|
Gui, H.R., Lin, M.L., 2016. Types of water hazards in China coalmines and regional characteristics. Nat. Hazards 84(2), 1501-1512. https://doi.org/ 10.1007/s11069-016-2488-5.
|
Huang, P.H., Yang, Z.Y., Wang, X.Y., Ding, F.F., 2019. Research on PiperPCA-Bayes-LOOCV discrimination model of water inrush source in mines. Arabian J. Geosci. 12(11), 334. https://doi.org/10.1007/s12517-019-4500-3.
|
Ju, Y., Zhu, Y., Xie, H.P., Nie, X.D., Zhang, Y., Lu, C., Gao, F., 2019. Fluidized mining and in-situ transformation of deep underground coal resources: A novel approach to ensuring safe, environmentally friendly, low-carbon, and clean utilization. Int. J. Coal Sci. Technol. 6(2), 184-196. https://doi.org/ 10.1007/s40789-019-0258-1.
|
Laaksoharjua, M., Gascoyne, M., Gurban, I., 2008. Understanding groundwater chemistry using mixing models. Appl. Geochem. 23(7), 1921-1940.https://doi.org/10.1016/j.apgeochem.2008.02.018.
|
Lin, M.L., Peng, W.H., Gui, H.R., 2016. Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China. Environ. Monit. Assess. 188, 202. https://doi.org/10.1007/s10661-016-5199-1.
|
Li, P.Y., 2018. Mine water problems and solutions in China. Mine Water Environ. 37(2), 217-221. https://doi.org/10.1007/s10230-018-0543-z.
|
Li, P.Y., Wu, J.H., Tian, R., He, S., He, X.D., Xue, C.Y., Zhang, K., 2018.Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China. Mine Water Environ. 37(2), 222-237. https://doi.org/10.1007/s10230-017-0507-8.
|
Li, P.Y., Tian, R., Liu, R., 2019. Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou Province, China. Expos. Health 11(2), 81-94. https://doi.org/10.1007/s12403-018-0277-y.
|
Qian, J.Z., Tong, Y., Ma, L., Zhao, W.D., Zhang, R.G., He, X.R., 2017.Hydrochemical characteristics and groundwater source identification of a multiple aquifer system in a coal mine. Mine Water Environ. 37(3), 528-540. https://doi.org/10.1007/s10230-017-0493-x.
|
Qiao, W., Howard, K.W.F., Li, W.P., Zhang, S.C., Zhang, X., Niu, Y.F., 2020.Coordinated exploitation of both coal and deep groundwater resources.Environ. Earth Sci. 79(5), 1-18. https://doi.org/10.1007/s12665-020-8859-y.
|
Ren, X.H., Gao, Z.J., An, Y.H., Liu, J.T., Wu, X., Feng, J.G., 2020. Hydrochemical and isotopic characteristics of groundwater in the Jiuquan East Basin, China. Arabian J. Geosci. 13(13), 752. https://doi.org/10.1007/s12517-020-05573-7.
|
Rueedi, J., Purtschert, R., Beyerle, U., Alberich, C., Kipfer, R., 2005. Estimating groundwater mixing ratios and their uncertainties using a statistical multi parameter approach. J. Hydrol. 305(1-4), 1-14. https://doi.org/10.1016/j.jhydrol.2004.06.044.
|
Sun, L.H., 2013. Hydrochemical variation during groundwater mixing: A case study with multivariate statistical approach. Water Pract. Technol. 8(3-4), 399-408. https://doi.org/10.2166/wpt.2013.040.
|
Sun, L.H., Chen, S., Gui, H.R., 2016. Source identification of inrush water based on groundwater hydrochemistry and statistical analysis.Water Pract. Technol. 11(2), 448-458. https://doi.org/10.2166/wpt.2016.049.
|
Wang, D.D., Shi, L.Q., 2019. Source identification of mine water inrush: A discussion on the application of hydrochemical method. Arabian J. Geosci. 12(2), 58. https://doi.org/10.1007/s12517-018-4076-3.
|
Wu, J.H., Li, P.Y., Qian, H., Duan, Z., Zhang, X.D., 2014. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: A case study in Laoheba phosphorite mine in Sichuan, China. Arabian J. Geosci. 7(10), 3973-3982. https://doi.org/10.1007/s12517-013-1057-4.
|
Wu, J.H., Li, P.Y., Wang, D., Ren, X.F., Wei, M.J., 2020. Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau. Hum. Ecol. Risk Assess. 26(6), 1603-1621. https://doi.org/10.1080/10807039.2019.1594156.
|
Yalcin, M.G., Tumuklu, A., Sonmez, M., Erdag, D.S., 2010. Application of multivariate statistical approach to identify heavy metal sources in bottom soil of the Seyhan River (Adana) Turkey. Environ. Monit. Assess. 164(1-4), 311-322. https://doi.org/10.1007/s10661-009-0894-9.
|
Yang, Q.C., Wang, L.C., Ma, H.Y., Yu, K., Martín, J.D., 2016. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environ. Pollut. 216, 340-349. https://doi.org/10.1016/j.envpol.2016.05.076.
|
Yang, Z.Y., Huang, P.H., Ding, F.F., 2020. Groundwater hydrogeochemical mechanisms and the connectivity of multilayer aquifers in a coal mining region. Mine Water Environ. 39(4), 808-822. https://doi.org/10.1007/s10230-020-00716-4.
|
Yu, H., Gui, H.R., Zhao, H.R., Wang, M.C., Li, J., Fang, H.X., Jiang, Y.Q., Zhang, Y.R., 2020. Hydrochemical characteristics and water quality evaluation of shallow groundwater in Suxian mining area, Huaibei coalfield, China. Int. J. Coal Sci. Technol. 7(4), 825-835. https://doi.org/10.1007/s40789-020-00365-6.
|
Zhang, H.T., Xu, G.Q., Chen, X.Q., Mabaire, A., Zhou, J.S., Zhang, Y.X., Zhang, G., Zhu, L., 2020. Groundwater hydrogeochemical processes and the connectivity of multilayer aquifers in a coal mine with karst collapse columns. Mine Water Environ. 39(2), 356-368. https://doi.org/10.1007/s10230-020-00667-w.
|
Zhang, J., Yao, D.X., 2020. Differences in hydro-chemical characteristics and genesis of sandstone fissure water from the roof and floor: A case study in Haizi coal mine, Northern Anhui Province, China. Arabian J.Geosci. 13(11), 863-882. https://doi.org/10.1007/s12517-020-05362-2.
|
Zhang, L.G., Liu, G.J., Chou, C.L., Qi, C.C., Zhang, Y., 2007. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China.J. Asian Earth Sci. 31(2), 167-176. https://doi.org/10.1016/j.jseaes.2007.06.001.
|