Volume 15 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Xiang Zhao, Wei-hua Peng, Kai Chen, Xin-yi Qiu, Lin-hua Sun. 2022: Potential hydraulic connectivity of coal mine aquifers based on statistical analysis of hydrogeochemistry. Water Science and Engineering, 15(4): 285-293. doi: 10.1016/j.wse.2022.08.004
Citation: Xiang Zhao, Wei-hua Peng, Kai Chen, Xin-yi Qiu, Lin-hua Sun. 2022: Potential hydraulic connectivity of coal mine aquifers based on statistical analysis of hydrogeochemistry. Water Science and Engineering, 15(4): 285-293. doi: 10.1016/j.wse.2022.08.004

Potential hydraulic connectivity of coal mine aquifers based on statistical analysis of hydrogeochemistry

doi: 10.1016/j.wse.2022.08.004

This work was supported by the Natural Science Research Project of Universities in Anhui Province (Grants No. KJ2020ZD64 and KJ2020A0740), the Anhui Provincial Natural Science Foundation (Grant No. 2008085MD122), the Zhejiang Provincial Natural Science Foundation (Grant No. LQ20D010009), the Key Program for Outstanding Young Talents in Higher Education Institutions of Anhui Province (Grant No. gxyqZD2021134), the Research Development Foundation of Suzhou University (Grant No. 2021fzjj28), and the Doctoral Scientific Reuter Foundation of Suzhou University (Grant No. 2019jb15).

  • Received Date: 2021-12-21
  • Accepted Date: 2022-08-27
  • Rev Recd Date: 2022-07-06
  • Available Online: 2022-11-04
  • Mining activities interfere with the natural groundwater chemical environment, which may lead to hydrogeochemical changes of aquifers and mine water inrush disasters. This study analyzed the hydrochemical compositions of 80 water samples in three aquifers and developed a water source identification model to explore the control factors and potential hydraulic connection of groundwater chemistry in a coal mine. The results showed that the hydrochemical types of the three aquifers were different. The main hydrochemical compositions of the loose-layer, coalbearing, and limestone aquifers were HCO3·Cl-Na, SO4·HCO3-Na, and SO4-Na·Ca, respectively. The correlation, Unmix, and factor analyses showed that the hydrochemical composition of groundwater was controlled by the dissolution of soluble minerals (such as calcite, dolomite, gypsum, and halite) and the weathering of silicate minerals. The factor score plot combined with Q-mode cluster analysis demonstrated no remarkable hydraulic connection among the three aquifers in the study area. The water source identification model effectively identified the source of inrush water. Moreover, the mixing ratio model rationally quantified the contributions of the three aquifers to inrush water.


  • loading
  • Ameh, E.G., 2019. Geochemistry and multivariate statistical evaluation of major oxides, trace and rare earth elements in coal occurrences and deposits around Kogi east, Northern Anambra Basin, Nigeria. Int. J.Coal Sci. Technol. 6(2), 260-273. https://doi.org/10.1007/s40789-019-0247-4.
    Armengol, S., Manzano, M., Bea, S.A., Martinez, S., 2017. Identifying and quantifying geochemical and mixing processes in the MatanzaeRiachuelo Aquifer System, Argentina. Sci. Total Environ. 599, 1417-1432. https://doi.org/10.1016/j.scitotenv.2017.05.046.
    Belkhiri, L., Mouni, L., Tiri, A., 2012. Watererock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environ.Geochem. Health 34, 1-13. https://doi.org/10.1007/s10653-011-9376-4.
    Chae, G.T., Yun, S.T., Kim, K., Mayer, B., 2006. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: Watererock interaction and hydrologic mixing. J. Hydrol. 321(1-4), 326-343. https://doi.org/10.1016/j.jhydrol.2005.08.006.
    Chen, S., Gui, H.R., 2017. Hydrogeochemical characteristics of groundwater in the coal-bearing aquifer of the Wugou coal mine, northern Anhui Province, China. Appl. Water Sci. 7(4), 1903-1910. https://doi.org/10.1007/s13201-015-0365-0.
    Chen, Y., Zhu, S.Y., Xiao, S.J., 2019. Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts. Nat. Hazards 99(2), 689-704. https://doi.org/10.1007/s11069-019-03767-1.
    Cloutier, V., Lefebvre, R., Therrien, R., Savard, M.M., 2008. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 353(3), 294-313. https://doi.org/10.1016/j.jhydrol.2008.02.015.
    Dinka, M.O., Loiskandl, W., Ndambuki, J.M., 2015. Hydrochemical characterization of various surface water and groundwater resources available in Matahara areas, Fantalle Woreda of Oromiya region. J. Hydrol.: Reg. Stud. 3, 444-456. https://doi.org/10.1016/j.ejrh.2015.02.007.
    Feng, F., Jia, Y.F., Yang, Y., Huan, H., Lian, X.Y., Xu, X.J., Xia, F., Han, X., Jiang, Y.H., 2020. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China. Environ. Sci. Pollut. Res. 27(28), 34840-34861. https://doi.org/10.1007/s11356-020-09784-z.
    Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science 170, 1080-1090. https://doi.org/10.1126/science.170.3962.1088.
    Gui, H.R., Lin, M.L., 2016. Types of water hazards in China coalmines and regional characteristics. Nat. Hazards 84(2), 1501-1512. https://doi.org/ 10.1007/s11069-016-2488-5.
    Huang, P.H., Yang, Z.Y., Wang, X.Y., Ding, F.F., 2019. Research on PiperPCA-Bayes-LOOCV discrimination model of water inrush source in mines. Arabian J. Geosci. 12(11), 334. https://doi.org/10.1007/s12517-019-4500-3.
    Ju, Y., Zhu, Y., Xie, H.P., Nie, X.D., Zhang, Y., Lu, C., Gao, F., 2019. Fluidized mining and in-situ transformation of deep underground coal resources: A novel approach to ensuring safe, environmentally friendly, low-carbon, and clean utilization. Int. J. Coal Sci. Technol. 6(2), 184-196. https://doi.org/ 10.1007/s40789-019-0258-1.
    Laaksoharjua, M., Gascoyne, M., Gurban, I., 2008. Understanding groundwater chemistry using mixing models. Appl. Geochem. 23(7), 1921-1940.https://doi.org/10.1016/j.apgeochem.2008.02.018.
    Lin, M.L., Peng, W.H., Gui, H.R., 2016. Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China. Environ. Monit. Assess. 188, 202. https://doi.org/10.1007/s10661-016-5199-1.
    Li, P.Y., 2018. Mine water problems and solutions in China. Mine Water Environ. 37(2), 217-221. https://doi.org/10.1007/s10230-018-0543-z.
    Li, P.Y., Wu, J.H., Tian, R., He, S., He, X.D., Xue, C.Y., Zhang, K., 2018.Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China. Mine Water Environ. 37(2), 222-237. https://doi.org/10.1007/s10230-017-0507-8.
    Li, P.Y., Tian, R., Liu, R., 2019. Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou Province, China. Expos. Health 11(2), 81-94. https://doi.org/10.1007/s12403-018-0277-y.
    Qian, J.Z., Tong, Y., Ma, L., Zhao, W.D., Zhang, R.G., He, X.R., 2017.Hydrochemical characteristics and groundwater source identification of a multiple aquifer system in a coal mine. Mine Water Environ. 37(3), 528-540. https://doi.org/10.1007/s10230-017-0493-x.
    Qiao, W., Howard, K.W.F., Li, W.P., Zhang, S.C., Zhang, X., Niu, Y.F., 2020.Coordinated exploitation of both coal and deep groundwater resources.Environ. Earth Sci. 79(5), 1-18. https://doi.org/10.1007/s12665-020-8859-y.
    Ren, X.H., Gao, Z.J., An, Y.H., Liu, J.T., Wu, X., Feng, J.G., 2020. Hydrochemical and isotopic characteristics of groundwater in the Jiuquan East Basin, China. Arabian J. Geosci. 13(13), 752. https://doi.org/10.1007/s12517-020-05573-7.
    Rueedi, J., Purtschert, R., Beyerle, U., Alberich, C., Kipfer, R., 2005. Estimating groundwater mixing ratios and their uncertainties using a statistical multi parameter approach. J. Hydrol. 305(1-4), 1-14. https://doi.org/10.1016/j.jhydrol.2004.06.044.
    Sun, L.H., 2013. Hydrochemical variation during groundwater mixing: A case study with multivariate statistical approach. Water Pract. Technol. 8(3-4), 399-408. https://doi.org/10.2166/wpt.2013.040.
    Sun, L.H., Chen, S., Gui, H.R., 2016. Source identification of inrush water based on groundwater hydrochemistry and statistical analysis.Water Pract. Technol. 11(2), 448-458. https://doi.org/10.2166/wpt.2016.049.
    Wang, D.D., Shi, L.Q., 2019. Source identification of mine water inrush: A discussion on the application of hydrochemical method. Arabian J. Geosci. 12(2), 58. https://doi.org/10.1007/s12517-018-4076-3.
    Wu, J.H., Li, P.Y., Qian, H., Duan, Z., Zhang, X.D., 2014. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: A case study in Laoheba phosphorite mine in Sichuan, China. Arabian J. Geosci. 7(10), 3973-3982. https://doi.org/10.1007/s12517-013-1057-4.
    Wu, J.H., Li, P.Y., Wang, D., Ren, X.F., Wei, M.J., 2020. Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau. Hum. Ecol. Risk Assess. 26(6), 1603-1621. https://doi.org/10.1080/10807039.2019.1594156.
    Yalcin, M.G., Tumuklu, A., Sonmez, M., Erdag, D.S., 2010. Application of multivariate statistical approach to identify heavy metal sources in bottom soil of the Seyhan River (Adana) Turkey. Environ. Monit. Assess. 164(1-4), 311-322. https://doi.org/10.1007/s10661-009-0894-9.
    Yang, Q.C., Wang, L.C., Ma, H.Y., Yu, K., Martín, J.D., 2016. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environ. Pollut. 216, 340-349. https://doi.org/10.1016/j.envpol.2016.05.076.
    Yang, Z.Y., Huang, P.H., Ding, F.F., 2020. Groundwater hydrogeochemical mechanisms and the connectivity of multilayer aquifers in a coal mining region. Mine Water Environ. 39(4), 808-822. https://doi.org/10.1007/s10230-020-00716-4.
    Yu, H., Gui, H.R., Zhao, H.R., Wang, M.C., Li, J., Fang, H.X., Jiang, Y.Q., Zhang, Y.R., 2020. Hydrochemical characteristics and water quality evaluation of shallow groundwater in Suxian mining area, Huaibei coalfield, China. Int. J. Coal Sci. Technol. 7(4), 825-835. https://doi.org/10.1007/s40789-020-00365-6.
    Zhang, H.T., Xu, G.Q., Chen, X.Q., Mabaire, A., Zhou, J.S., Zhang, Y.X., Zhang, G., Zhu, L., 2020. Groundwater hydrogeochemical processes and the connectivity of multilayer aquifers in a coal mine with karst collapse columns. Mine Water Environ. 39(2), 356-368. https://doi.org/10.1007/s10230-020-00667-w.
    Zhang, J., Yao, D.X., 2020. Differences in hydro-chemical characteristics and genesis of sandstone fissure water from the roof and floor: A case study in Haizi coal mine, Northern Anhui Province, China. Arabian J.Geosci. 13(11), 863-882. https://doi.org/10.1007/s12517-020-05362-2.
    Zhang, L.G., Liu, G.J., Chou, C.L., Qi, C.C., Zhang, Y., 2007. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China.J. Asian Earth Sci. 31(2), 167-176. https://doi.org/10.1016/j.jseaes.2007.06.001.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (34) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint