Citation: | Xiang-kun Li, Ying-jun Yang, Gai-ge Liu, Dou-dou Sun, Xiao-chen Ma. 2023: Enhanced nitrogen removal at low temperature with mixed anoxic/oxic process. Water Science and Engineering, 16(1): 67-75. doi: 10.1016/j.wse.2022.08.005 |
Adams, H.E., Crump, B.C., Kling, G.W., 2010. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams. Environ. Microbiol. 12(5), 1319-1333. https://doi.org/10.1111/j.1462-2920.2010.02176.x.
|
Alawi, M., Off, S., Kaya, M., Spieck, E., 2009. Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ. Microbiol. Rep. 1(3), 184-190. https://doi.org/10.1111/j.1758-2229.2009.00029.x.
|
Anbarasan, A., Sebastian, S., Carl-Fredrik, L., Emma, N., 2016. Influence of hydraulic retention time on indigenous microalgae and activated sludge process.Water Res. 91, 277-284. https://doi.org/10.1016/j.watres.2016.01.027.
|
Annalisa, O., Nehreen, M., Andreas, S., April, Z.G., 2011. Process optimization by decoupled control of key microbial populations: Distribution of activity and abundance of polyphosphate-accumulating organisms and nitrifying populations in a full-scale IFAS-EBPR plant. Water Res. 45(13), 3845-3854. https://doi.org/10.1016/j.watres.2011.04.039.
|
Annelies, J.V., Jeroen, J.M.D.K., Marten, S., 2011. Warming can boost denitrification disproportionately due to altered oxygen dynamics. PLoS One 6(3), e18508. https://doi.org/10.1371/journal.pone.0018508.
|
APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), Washington D.C.https://doi.org/10.2105/AJPH.56.4.684-a.
|
Ashkanani, A., Almomani, F., Khraisheh, M., Bhosale, R., Tawalbeh, M., AlJaml, K., 2019. Bio-carrier and operating temperature effect on ammonia removal from secondary wastewater effluents using moving bed biofilm reactor (MBBR). Sci. Total Environ. 693, 133425. https://doi.org/10.1016/j.scitotenv.2019.07.231.
|
Beer, C.S.G.M., 1998. Biofilm dynamics studied with microsensors and molecular techniques. Water Sci. Technol. 37(4-5), 125-129. https://doi.org/10.1016/S0273-1223(98)00094-8.
|
Cydzik-Kwiatkowska, A., Rusanowska, P., Zieli nska, M., Bernat, K., Wojnowska-Baryła, I., 2014. Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant. Bioresour. Technol. 154, 162-170. https://doi.org/10.1016/j.biortech.2013.11.099.
|
Delatolla, R., Tufenkji, N., Comeau, Y., Gadbois, A., Lamarre, D., Berk, D., 2009. Kinetic analysis of attached growth nitrification in cold climates.Water Sci. Technol. 60(5), 1173-1184. https://doi.org/10.2166/wst.2009.419.
|
Delatolla, R., Tufenkji, N., Comeau, Y., Gadbois, A., Lamarre, D., Berk, D., 2012. Effects of long exposure to low temperatures on nitrifying biofilm and biomass in wastewater treatment. Water Environ. Res. 84(4), 328-338. https://doi.org/10.2175/106143012X13354606450924.
|
Di Trapani, D., Christensson, M., Torregrossa, M., Viviani, G., Ødegaard, H., 2013. Performance of a hybrid activated sludge/biofilm process for wastewater treatment in a cold climate region: Influence of operating conditions. Biochem. Eng. J. 77, 214-219. https://doi.org/10.1016/j.bej.2013.06.013.
|
Ding, S., He, J., Luo, X., Zheng, Z., 2020. Simultaneous nitrogen and carbon removal in a packed A/O reactor: Effect of C/N ratio on microbial community structure. Bioproc. Biosyst. Eng. 43, 1241-1252. https://doi.org/10.1007/s00449-020-02319-3.
|
Figuerola, E.L.M., Erijman, L., 2007. Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach. Environ. Microbiol. 9, 1780-1789. https://doi.org/10.1111/j.1462-2920.2007.01298.x.
|
Gujer, W., 2010. Nitrification and me: A subjective review. Water Res. 44, 1-19. https://doi.org/10.1016/j.watres.2009.08.038.
|
Han, Y., Li, L., Liu, J., 2013. Characterization of the airborne bacteria community at different distances from the rotating brushes in a wastewater treatment plant by 16S rRNA gene clone libraries. J. Environ. Sci. 25, 5-15. https://doi.org/10.1016/S1001-0742(12)60018-7.
|
Healy, M.G., Rodgers, M., Mulqueen, J., 2007. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters. Bioresour. Technol. 98, 2268-2281. https://doi.org/10.1016/j.biortech.2006.07.036.
|
Hu, M., Wang, X., Wen, X., Xia, Y., 2012. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour. Technol. 117, 72-79. https://doi.org/10.1016/j.biortech.2012.04.061.
|
Huang, C., Shi, Y., Gamal El-Din, M., Liu, Y., 2015. Treatment of oil sands process-affected water (OSPW) using ozonation combined with integrated fixed-film activated sludge (IFAS). Water Res. 85, 167-176. https://doi.org/10.1016/j.watres.2015.08.019.
|
Jaafari, J., Javid, A.B., Barzanouni, H., Younesi, A., Soleimani, P., 2019.
|
Desalination and water treatment performance of modified one-stage Phoredox reactor with hydraulic up-flow in biological removal of phosphorus from municipal wastewater. Desalination Water Treat. 171, 216-222. https://doi.org/10.5004/dwt.2019.24752.
|
Jafari, J., Mesdaghinia, A., Nabizadeh, R., Farrokhi, M., Mahvi, A.H., 2013.Investigation of anaerobic fluidized bed reactor/aerobic moving bed bio reactor (AFBR/MMBR) system for treatment of currant wastewater. Iran.J. Public Health 42, 860-867.
|
Karkman, A., Mattila, K., Tamminen, M., Virta, M., 2011. Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol. Bioeng. 108(12), 2876-2883.https://doi.org/10.1002/bit.23267.
|
Kim, T., Hite, M., Rogacki, L., Sealock, A.W., Sprouse, G., Novak, P.J., LaPara, T.M., 2021. Dissolved oxygen concentrations affect the function but not the relative abundance of nitrifying bacterial populations in fullscale municipal wastewater treatment bioreactors during cold weather.Sci. Total Environ. 781, 146719. https://doi.org/10.1016/j.scitotenv.2021.146719.
|
Kitzinger, K., Koch, H., Lucker, S., Sedlacek, C.J., Herbold, C., Schwarz, J., Daebeler, A., Mueller, A.J., Lukumbuzya, M., Romano, S., et al., 2018.Characterization of the first "Candidatus Nitrotoga" isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. mBio 9(4), e01186-18. https://doi.org/10.1128/mBio.01186-18.
|
Knoop, S., Kunst, S., 1998. Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix parvicella. Water Sci.Technol. 37(4-5), 27-35. https://doi.org/10.1016/S0273-1223(98)00080-8.
|
Kulandaiappan, V., Ramachandran, T., Thirugnanasambantham, A., 2015.Isolation and purification of Lactobacillus acidophilus and analyzing its influence on effluent treatment. International Journal of Engineering and Technology Innovation 5(1), 66-74.
|
Leyva-Díaz, J.C., Martín-Pascual, J., Poyatos, J.M., 2017. Moving bed biofilm reactor to treat wastewater. Int. J. Environ. Sci. Technol. 14, 881-910.https://doi.org/10.1007/s13762-016-1169-y.
|
Li, C., Liu, S., Ma, T., Zheng, M., Ni, J., 2019. Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor(SBR) under low temperature. Chemosphere 229, 132-141. https://doi.org/10.1016/j.chemosphere.2019.04.185.
|
Li, S., Duan, H., Zhang, Y., Huang, X., Yuan, Z., Liu, Y., Zheng, M., 2020.Adaptation of nitrifying community in activated sludge to free ammonia inhibition and inactivation. Sci. Total Environ. 728, 138713. https://doi.org/10.1016/j.scitotenv.2020.138713.
|
Li, T., Bo, L., Yang, F., Zhang, S., Wu, Y., Yang, L., 2012. Comparison of the removal of COD by a hybrid bioreactor at low and room temperature and the associated microbial characteristics. Bioresour. Technol. 108, 28-34.https://doi.org/10.1016/j.biortech.2011.12.141.
|
Li, X., Lu, M., Huang, Y., Yuan, Y., Yuan, Y., 2021. Influence of seasonal temperature change on autotrophic nitrogen removal for mature landfill leachate treatment with high-ammonia by partial nitrificationeanammox process. J. Environ. Sci. 102, 291-300. https://doi.org/10.1016/j.jes.2020.09.031.
|
Liao, R., Shen, K., Li, A., Shi, P., Li, Y., Shi, Q., Wang, Z., 2013. High-nitrate wastewater treatment in an expanded granular sludge bed reactor and microbial diversity using 454 pyrosequencing analysis. Bioresour. Technol. 134, 190-197. https://doi.org/10.1016/j.biortech.2012.12.057.
|
Liu, J., Xue, C., Sun, H., Zheng, Y., Meng, Z., Zhang, X., 2019. Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water. Syst. Appl. Microbiol. 42(3), 263-274. https://doi.org/10.1016/j.syapm.2019.01.002.
|
Lu, H., Wang, T., Lu, S., Liu, H., Wang, H., Li, C., Liu, X., Guo, X., Zhao, X., Liu, F., 2021. Performance and bacterial community dynamics of hydroponically grown Iris pseudacorus L. during the treatment of antibioticenriched wastewater at low/normal temperature. Ecotoxicol. Environ. Saf. 213, 111997. https://doi.org/10.1016/j.ecoenv.2021.111997.
|
Lucker, S., Schwarz, J., Gruber-Dorninger, C., Spieck, E., Wagner, M., Daims, H., 2015. Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants. ISME J. 9, 708-720. https://doi.org/10.1038/ismej.2014.158.
|
Malovanyy, A., Trela, J., Plaza, E., 2015. Mainstream wastewater treatment in integrated fixed film activated sludge (IFAS) reactor by partial nitritation/anammox process. Bioresour. Technol. 198, 478-487. https://doi.org/10.1016/j.biortech.2015.08.123.
|
Mannina, G., Capodici, M., Cosenza, A., Di Trapani, D., Zhu, Z., Li, Y., 2020.Integrated fixed film activated sludge (IFAS) membrane bioreactor: The influence of the operational parameters. Bioresour. Technol. 301, 122752.
|
https://doi.org/10.1016/j.biortech.2020.122752.
|
Mariusz, T., Grzegorz, C., Aleksandra, Z., 2017. Influence of temperature and pH on the anammox process: A review and meta-analysis. Chemosphere 182, 203-214. https://doi.org/10.1016/j.chemosphere.2017.05.003.
|
Moretti, P., Choubert, J.M., Canler, J.P., Petrimaux, O., Buffiere, P., Lessard, P., 2015. Understanding the contribution of biofilm in an integrated fixed-film-activated sludge system (IFAS) designed for nitrogen removal. Water Sci. Technol. 71(10), 1500-1506. https://doi.org/10.2166/wst.2015.127.
|
Naghipour, D., Rouhbakhsh, E., Jaafari, J., 2020. Application of the biological reactor with fixed media (IFAS) for removal of organic matter and nutrients in small communities. Int. J. Environ. Anal. Chem. 2020, 1803851.https://doi.org/10.1080/03067319.2020.1803851.
|
Nguyen, H.T., Le, V.Q., Hansen, A.A., Nielsen, J.L., Nielsen, P.H., 2011.High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiol. Ecol. 76(2), 256-267. https://doi.org/10.1111/j.1574-6941.2011.01049.x.
|
Park, H., Noguera, D.R., 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 38(14-15), 3275-3286. https://doi.org/10.1016/j.watres.2004.04.047.
|
Peng, Y., Wang, X., Li, B., 2006. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination 189(1-3), 155-164. https://doi.org/10.1016/j.desal.2005.06.023.
|
Phanwilai, S., Kangwannarakul, N., Noophan, P.L., Kasahara, T., Terada, A., Munakata, M.J., Figueroa, L.A., 2020. Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD: N ratio. Front. Environ. Sci. Eng. 14(6), 115. https://doi.org/10.1007/s11783-020-1374-2.
|
Regmi, P., Thomas, W., Schafran, G., Bott, C., Rutherford, B., Waltrip, D., 2011. Nitrogen removal assessment through nitrification rates and media biofilm accumulation in an IFAS process demonstration study. Water Res. 45(20), 6699-6708. https://doi.org/10.1016/j.watres.2011.10.009.
|
Rodriguez-Caballero, A., Hallin, S., Påhlson, C., Odlare, M., Dahlquist, E., 2012.Ammonia oxidizing bacterial community composition and process performance in wastewater treatment plants under low temperature conditions.Water Sci. Technol. 65(2), 197-204. https://doi.org/10.2166/wst.2012.643.
|
Shore, J.L., M'Coy, W.S., Gunsch, C.K., Deshusses, M.A., 2012. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater. Bioresour. Technol. 112, 51-60. https://doi.org/10.1016/j.biortech.2012.02.045.
|
Sudarno, U., Winter, J., Gallert, C., 2011. Effect of varying salinity, temperature, ammonia and nitrous acid concentrations on nitrification of saline wastewater in fixed-bed reactors. Bioresour. Technol. 102, 5665-5673.https://doi.org/10.1016/j.biortech.2011.02.078.
|
Sun, H., Narihiro, T., Ma, X., Zhang, X., Ren, H., Ye, L., 2019. Diverse aromatic-degrading bacteria present in a highly enriched autotrophic nitrifying sludge. Sci. Total Environ. 666, 245-251. https://doi.org/10.1016/j.scitotenv.2019.02.172.
|
Trojanowicz, K., Plaza, E., Trela, J., 2016. Pilot scale studies on nitritationeanammox process for mainstream wastewater at low temperature. Water Sci. Technol. 73(4), 761-768. https://doi.org/10.2166/wst.2015.551.
|
Wang, J., Chu, L., 2016. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv. 34(6), 1103-1112.https://doi.org/10.1016/j.biotechadv.2016.07.001.
|
Wang, L., Li, T., 2015. Effects of seasonal temperature variation on nitrification, anammox process, and bacteria involved in a pilot-scale constructed wetland. Environ. Sci. Pollut. Res. 22, 3774-3783. https://doi.org/10.1007/s11356-014-3633-x.
|
Wang, X., Hu, M., Xia, Y., Wen, X., Ding, K., 2012. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl.Environ. Microbiol. 78(19), 7042-7047. https://doi.org/10.1128/AEM.01617-12.
|
Wang, Y., Zhang, Z., Qiu, L., Guo, Y., Wang, X., Xiong, X., Chen, S., 2015.Effect of temperature downshifts on biological nitrogen removal and community structure of a lab-scale aerobic denitrification process. Biochem. Eng. J. 101, 200-208. https://doi.org/10.1016/j.bej.2015.05.018.
|
Wang, Y., Du, Z., Liu, Y., Wang, H., Xu, F., Liu, B., Zheng, Z., 2019. The nitrogen removal and sludge reduction performance of a multi-stage anoxic/oxic (A/O) biofilm reactor. Water Environ. Res. 92(1), 94-105.https://doi.org/10.1002/wer.1188.
|
Wegen, S., Nowka, B., Spieck, E., Liu, S., 2019. Low temperature and neutral pH define "Candidatus nitrotoga sp." as a competitive nitrite oxidizer in coculture with Nitrospira defluvii. Appl. Environ. Microbiol. 85, e02569-18. https://doi.org/10.1128/AEM.02569-18.
|
Xia, S., Duan, L., Song, Y., Li, J., Piceno, Y.M., Andersen, G.L., AlvarezCohen, L., Moreno-Andrade, I., Huang, C., Hermanowicz, S.W., 2010.Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ. Sci. Technol. 44(19), 7391-7396.https://doi.org/10.1021/es101554m.
|
Yao, S., Ni, J., Ma, T., Li, C., 2013. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresour. Technol. 139, 80-86. https://doi.org/10.1016/j.biortech.2013.03.189.
|
Zhang, S., Wang, Y., He, W., Wu, M., Xing, M., Yang, J., Gao, N., Yin, D., 2013. Responses of biofilm characteristics to variations in temperature and NH4+-N loading in a moving-bed biofilm reactor treating micro-polluted raw water. Bioresour. Technol. 131, 365-373. https://doi.org/10.1016/j.biortech.2012.12.172.
|
Zhang, S., Wang, Y., He, W., Wu, M., Xing, M., Yang, J., Gao, N., Pan, M., 2014. Impacts of temperature and nitrifying community on nitrification kinetics in a moving-bed biofilm reactor treating polluted raw water.Chem. Eng. J. 236, 242-250. https://doi.org/10.1016/j.cej.2013.09.086.
|
Zhou, H., Li, X., Chu, Z., Zhang, J., 2016. Effect of temperature downshifts on a bench-scale hybrid A/O system: Process performance and microbial community dynamics. Chemosphere 153, 500-507. https://doi.org/10.1016/j.chemosphere.2016.03.092.
|
Zhou, H., Li, X., Xu, G., Yu, H., 2018. Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature. Sci.Total Environ. 643, 225-237. https://doi.org/10.1016/j.scitotenv.2018. 06.100.
|