Volume 15 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Md. Abul Hashem, Sofia Payel, Sadia Mim, Md. Anik Hasan, Md. Shahruk Nur-A-Tomal, Md. Aminur Rahman, Majher I. Sarker. 2022: Chromium adsorption on surface activated biochar made from tannery liming sludge: A waste-to-wealth approach. Water Science and Engineering, 15(4): 328-336. doi: 10.1016/j.wse.2022.09.001
Citation: Md. Abul Hashem, Sofia Payel, Sadia Mim, Md. Anik Hasan, Md. Shahruk Nur-A-Tomal, Md. Aminur Rahman, Majher I. Sarker. 2022: Chromium adsorption on surface activated biochar made from tannery liming sludge: A waste-to-wealth approach. Water Science and Engineering, 15(4): 328-336. doi: 10.1016/j.wse.2022.09.001

Chromium adsorption on surface activated biochar made from tannery liming sludge: A waste-to-wealth approach

doi: 10.1016/j.wse.2022.09.001
  • Received Date: 2022-03-04
  • Accepted Date: 2022-09-06
  • Rev Recd Date: 2022-07-25
  • Available Online: 2022-11-04
  • In a beamhouse, liming plays a key role in the removal of hair/wool and epidermis, but problems are created when waste liming sludge is discharged to the environment. The treatment of tannery wastewater is another major challenge to the industry. In this study, thermally-activated biochars derived from liming sludge were studied for their effective adsorption of chromium (Cr) from the tannery wastewater. The thermally activated biochars (B500, B550, B600, and B650) were prepared at different temperatures from the liming sludge. Their characteristics before and after the treatment were investigated using Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, BrunauereEmmetteTeller, and scanning electron microscopy analyses. The related functional groups (C-H, O-H, C-N, and =C-O) and chromium adsorption capacity were determined according to the surface morphology, element contents (C, O, Ca, Na, Al, Mg, and Si), surface area (5.8-9.2 m2/g), pore size (5.22-5.53 nm), and particle size (652-1 034 nm) of the experimental biochars. The biochar originated at 600 C from the tannery liming sludge (B600) had a greater surface area with a chromium adsorption capacity of 99.8% in comparison to B500, B550, and B650 biochars. This study developed an innovative way of utilizing liming sludge waste to minimize the pollution load and wastewater treatment cost in the tannery industry.

     

  • loading
  • Agustini, C.B., Meyer, M., Da Costa, M., Gutterres, M., 2018. Biogas from anaerobic co-digestion of chrome and vegetable tannery solid waste mixture:Influence of the tanning agent and thermal pretreatment. Process Saf. Environ. Protect. 118, 24-31. https://doi.org/10.1016/j.psep.2018.06.021.
    Arim, A.L., Neves, K., Quina, M.J., Gando-Ferreira, L.M., 2018. Experimental and mathematical modelling of Cr(III) sorption in fixed-bed column using modified pine bark. J. Clean. Prod. 183, 272-281. https://doi.org/10.1016/j.jclepro.2018.02.094.
    Azizian, S., 2004. Kinetic models of sorption: A theoretical analysis. J.Colloid Interface Sci. 276, 47-52. https://doi.org/10.1016/j.jcis.2004.03.048.
    Bai, C., Wang, L., Zhu, Z., 2020. Adsorption of Cr(III) and Pb(II) by graphene oxide/alginate hydrogel membrane: Characterization, adsorption kinetics, isotherm and thermodynamics studies. Int. J. Biol. Macromol. 147, 898-910. https://doi.org/10.1016/j.ijbiomac.2019.09.249.
    Bashir, M.A., Naveed, M., Ahmad, Z., Gao, B., Mustafa, A., NúñezDelgado, A., 2020. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 259, 110051. https://doi.org/10.1016/j.jenvman.2019.110051.
    Bharagava, R.N., Mishra, S., 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 147, 102-109. https://doi.org/10.1016/j.ecoenv.2017.08.040.
    Bibi, I., Niazi, N.K., Choppala, G., Burton, E.D., 2018. Chromium(VI) removal by siderite (FeCO3) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Sci. Total Environ. 640, 1424-1431.https://doi.org/10.1016/j.scitotenv.2018.06.003.
    Blanchard, G., Maunaye, M., Martin, G., 1984. Removal of heavy metals from waters by means of natural zeolites. Water Res. 18, 1501-1507. https://doi.org/10.1016/0043-1354(84)90124-6.
    Chowdhary, P., Yadav, A., Kaithwas, G., Bharagava, R.N., 2017. Distillery wastewater: A major source of environmental pollution and its biological treatment for environmental safety. In: Singh, R., Kumar, S. (Eds.), Green Technologies and Environmental Sustainability. Springer, Cham, pp. 409-435. https://doi.org/10.1007/978-3-319-50654-8_18.
    da Silva, G.S., dos Santos, F.A., Roth, G.C.L.C., Frankenberg, C.L.C., 2020.Electroplating for chromium removal from tannery wastewater. Int. J.Environ. Sci. Technol. 17, 607-614. https://doi.org/10.1007/s13762-019-02494-1.
    Ertani, A., Mietto, A., Borin, M., Nardi, S., 2017. Chromium in agricultural soils and crops: A review. Water, Air & Soil Pollution 228(5), 190. https://doi.org/10.1007/s11270-017-3356-y.
    Farghali, A.A., Bahgat, M., ElRouby, W.M.A., Khedr, M.H., 2013. Decoration of multi-walled carbon nanotubes (MWCNTs) with different ferrite nanoparticles and its use as an adsorbent. Journal of Nanostructure in Chemistry 3(1), 1-9. https://doi.org/10.1186/2193-8865-3-50.
    Guimarães, T., Paquini, L.D., Lyrio Ferraz, B.R., Roberto Profeti, L.P., Profeti, D., 2020. Efficient removal of Cu(II) and Cr(III) contaminants from aqueous solutions using marble waste powder. J. Environ. Chem.Eng. 8(4), 103986. https://doi.org/10.1016/j.jece.2020.103972.
    Guo, C., Ding, L., Jin, X., Zhang, H., Zhang, D., 2021. Application of response surface methodology to optimize chromium(VI) removal from aqueous solution by cassava sludge-based activated carbon. J. Environ. Chem. Eng. 9(1), 104785. https://doi.org/10.1016/j.jece.2020.104785.
    Hashem, M.A., Hasan, M., Momen, M.A., Payel, S., Nur-A-Tomal, M.S., 2020. Water hyacinth biochar for trivalent chromium adsorption from tannery wastewater. Environmental and Sustainability Indicators 5, 100022. https://doi.org/10.1016/j.indic.2020.100022.
    Ho, Y.S., 1995. Adsorption of Heavy Metals from Waste Streams by Peat.Ph.D. Dissertation. University of Birmingham, Birmingham.
    Hong, S.C., 2018. Developing the leather industry in Bangladesh. ADB Briefs 102, 1-8. https://doi.org/10.22617/BRF189645-2.
    Kanagaraj, J., Panda, R.C., Kumar, M.V., 2020. Trends and advancements in sustainable leather processing: Future directions and challengeseA review.J. Environ. Chem. Eng. 8(5), 104379. https://doi.org/10.1016/j.jece.2020.104379.
    Kokkinos, E., Proskynitopoulou, V., Zouboulis, A., 2019. Chromium and energy recovery from tannery wastewater treatment waste: Investigation of major mechanisms in the framework of circular economy. J. Environ.Chem. Eng. 7(5), 103307. https://doi.org/10.1016/j.jece.2019.103307.
    Kumar, A., Jena, H.M., 2017. Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2. Process Saf. Environ. Protect. 109, 63-71. https://doi.org/10.1016/j.psep.2017.03.032.
    Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskaps Akademiens Handlingar 24, 1-39.
    Li, H., Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y., Ma, L.Q., 2017.Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072.
    Mirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., Aghbashlo, M., 2019.Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports 7, 100202. https://doi.org/10.1016/j.biteb.2019.100202.
    Mohammed, K., Sahu, O., 2019. Recovery of chromium from tannery industry wastewater by membrane separation technology: Health and engineering aspects. Scientific African 4, e00096. https://doi.org/10.1016/j.sciaf.2019.e00096.
    Nasrollahzadeh, M.S., Hadavifar, M., Ghasemi, S.S., Chamjangali, M.A., 2018. Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions. Appl.Water Sci. 8, 1-12. https://doi.org/10.1007/s13201-018-0750-6.
    Nigam, M., Rajoriya, S., Singh, S.R., Kumar, P., 2019. Adsorption of Cr(VI)ion from tannery wastewater on tea waste: Kinetics, equilibrium and thermodynamics studies. J. Environ. Chem. Eng. 7(3), 103188. https://doi.org/10.1016/j.jece.2019.103188.
    Payel, S., Hashem, M.A., Hasan, M.A., 2021. Recycling biochar derived from tannery liming sludge for chromium adsorption in static and dynamic conditions. Environ. Technol. Innovat. 24, 102010. https://doi.org/10.1016/j.eti.2021.102010.
    Pinakidou, F., Katsikini, M., Varitis, S., Komninou, P., Schuck, G., Paloura, E.C., 2021. Probing the structural role of Cr in stabilized tannery wastes with X-ray absorption fine structure spectroscopy. J. Hazard Mater. 262, 48-54. https://doi.org/10.1016/j.jhazmat.2020.123734.
    Rafique, M.I., Usman, A.R.A., Ahmad, M., Al-Wabel, M.I., 2021. Immobilization and mitigation of chromium toxicity in aqueous solutions and tannery waste-contaminated soil using biochar and polymer-modified biochar. Chemosphere 266, 129198. https://doi.org/10.1016/j.chemosphere.2020.129198.
    Rambabu, K., Bharath, G., Banat, F., Show, P.L., 2020. Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal. Environ. Res. 187, 109694. https://doi.org/10.1016/j.envres.2020.109694.
    Setshedi, K.Z., Bhaumik, M., Onyango, M.S., Maity, A., 2014. Breakthrough studies for Cr(VI) sorption from aqueous solution using exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite. J.Ind. Eng. Chem. 20(4), 2208-2216. https://doi.org/10.1016/j.jiec.2013.09.052.
    Show, S., Mukherjee, S., Devi, M.S., Karmakar, B., Halder, G., 2021. Linear and non-linear analysis of Ibuprofen riddance efficacy by Terminalia catappa active biochar: Equilibrium, kinetics, safe disposal, reusability and cost estimation. Process Saf. Environ. Protect. 147, 942-964. https://doi.org/10.1016/j.psep.2021.01.024.
    Srivastava, A.N., Chakma, S., 2022. Bioavailability reduction of heavy metals through dual mode anaerobic Co-landfilling of municipal solid waste and industrial organic sludge. Chem. Eng. J. 439, 135725. https://doi.org/ 10.1016/j.cej.2022.135725.
    Tadesse, G.L., Guya, T.K., 2017. Impacts of tannery effluent on environments and human health: A review article. Adv. Life Sci. Technol. 7(3), 88-97.
    Teshale, F., Karthikeyan, R., Sahu, O., 2020. Synthesized bioadsorbent from fish scale for chromium(III) removal. Micron 130, 102817. https://doi.org/ 10.1016/j.micron.2019.102817.
    Verma, S.K., Sharma, P.C., 2020. NGS-based characterization of microbial diversity and functional profiling of solid tannery waste metagenomes. Genomics 112(4), 2903-2913. https://doi.org/10.1016/j.ygeno.2020.04.002.
    Wang, D., He, S., Shan, C., Ye, Y., Ma, H., Zhang, X., Zhang, W., Pan, B., 2016. Chromium speciation in tannery effluent after alkaline precipitation:Isolation and characterization. J. Hazard Mater. 316, 169-177. https://doi.org/10.1016/j.jhazmat.2016.05.021.
    Xu, H., Liu, Y., Liang, H., Gao, C., Qin, J., You, L., Wang, R., Li, J., Yang, S., 2021. Adsorption of Cr(VI) from aqueous solutions using novel activated carbon spheres derived from glucose and sodium dodecylbenzene sulfonate.Sci. Total Environ. 759, 143457. https://doi.org/10.1016/j.scitotenv.2020.143457.
    Yahya, M.D., Abubakar, H., Obayomi, K.S., Iyaka, Y.A., Suleiman, B., 2020a.Simultaneous and continuous biosorption of Cr and Cu(II) ions from industry tannery effluent using almond shell in a fixed bed column. Results in Engineering 6, 100113. https://doi.org/10.1016/j.rineng.2020.100113.
    Yahya, M.D., Obayomi, K.S., Abdulkadir, M.B., Iyaka, Y.A., Olugbenga, A.G., 2020b. Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Sci. Eng. 13(3), 202-213.https://doi.org/10.1016/j.wse.2020.09.007.
    Yang, Y., Ma, H., Chen, X., Zhu, C., Li, X., 2020. Effect of incineration temperature on chromium speciation in real chromium-rich tannery sludge under air atmosphere. Environ. Res. 183, 109159. https://doi.org/10.1016/j.envres.2020.109159.
    Yoseph, Z., Christopher, J.G., Demessie, B.A., Selvi, A.T., Sreeram, K.J., Rao, J.R., 2020. Extraction of elastin from tannery wastes: A cleaner technology for tannery waste management. J. Clean. Prod. 243, 118471.https://doi.org/10.1016/j.jclepro.2019.118471.
    Zapana, J.S., Arán, D.S., Bocardo, E.F., Harguinteguy, C.A., 2020. Treatment of tannery wastewater in a pilot scale hybrid constructed wetland system in Arequipa, Peru. Int. J. Environ. Sci. Technol. 17(11), 4419-4430. https://doi.org/10.1007/s13762-020-02797-8.
    Zeng, H., Zeng, H., Zhang, H., Shahab, A., Zhang, K., Lu, Y., Nabi, I., Naseem, F., Ullah, H., 2021. Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. J. Clean.Prod. 286, 124964. https://doi.org/10.1016/j.jclepro.2020.124964.
    Zhang, Y.P., Adi, V.S.K., Huang, H.L., Lin, H.P., Huang, Z.H., 2019.Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. J. Ind. Eng.Chem. 76, 240-244. https://doi.org/10.1016/j.jiec.2019.03.046.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (74) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return