Citation: | Md. Abul Hashem, Sofia Payel, Sadia Mim, Md. Anik Hasan, Md. Shahruk Nur-A-Tomal, Md. Aminur Rahman, Majher I. Sarker. 2022: Chromium adsorption on surface activated biochar made from tannery liming sludge: A waste-to-wealth approach. Water Science and Engineering, 15(4): 328-336. doi: 10.1016/j.wse.2022.09.001 |
Agustini, C.B., Meyer, M., Da Costa, M., Gutterres, M., 2018. Biogas from anaerobic co-digestion of chrome and vegetable tannery solid waste mixture:Influence of the tanning agent and thermal pretreatment. Process Saf. Environ. Protect. 118, 24-31. https://doi.org/10.1016/j.psep.2018.06.021.
|
Arim, A.L., Neves, K., Quina, M.J., Gando-Ferreira, L.M., 2018. Experimental and mathematical modelling of Cr(III) sorption in fixed-bed column using modified pine bark. J. Clean. Prod. 183, 272-281. https://doi.org/10.1016/j.jclepro.2018.02.094.
|
Azizian, S., 2004. Kinetic models of sorption: A theoretical analysis. J.Colloid Interface Sci. 276, 47-52. https://doi.org/10.1016/j.jcis.2004.03.048.
|
Bai, C., Wang, L., Zhu, Z., 2020. Adsorption of Cr(III) and Pb(II) by graphene oxide/alginate hydrogel membrane: Characterization, adsorption kinetics, isotherm and thermodynamics studies. Int. J. Biol. Macromol. 147, 898-910. https://doi.org/10.1016/j.ijbiomac.2019.09.249.
|
Bashir, M.A., Naveed, M., Ahmad, Z., Gao, B., Mustafa, A., NúñezDelgado, A., 2020. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 259, 110051. https://doi.org/10.1016/j.jenvman.2019.110051.
|
Bharagava, R.N., Mishra, S., 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 147, 102-109. https://doi.org/10.1016/j.ecoenv.2017.08.040.
|
Bibi, I., Niazi, N.K., Choppala, G., Burton, E.D., 2018. Chromium(VI) removal by siderite (FeCO3) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Sci. Total Environ. 640, 1424-1431.https://doi.org/10.1016/j.scitotenv.2018.06.003.
|
Blanchard, G., Maunaye, M., Martin, G., 1984. Removal of heavy metals from waters by means of natural zeolites. Water Res. 18, 1501-1507. https://doi.org/10.1016/0043-1354(84)90124-6.
|
Chowdhary, P., Yadav, A., Kaithwas, G., Bharagava, R.N., 2017. Distillery wastewater: A major source of environmental pollution and its biological treatment for environmental safety. In: Singh, R., Kumar, S. (Eds.), Green Technologies and Environmental Sustainability. Springer, Cham, pp. 409-435. https://doi.org/10.1007/978-3-319-50654-8_18.
|
da Silva, G.S., dos Santos, F.A., Roth, G.C.L.C., Frankenberg, C.L.C., 2020.Electroplating for chromium removal from tannery wastewater. Int. J.Environ. Sci. Technol. 17, 607-614. https://doi.org/10.1007/s13762-019-02494-1.
|
Ertani, A., Mietto, A., Borin, M., Nardi, S., 2017. Chromium in agricultural soils and crops: A review. Water, Air & Soil Pollution 228(5), 190. https://doi.org/10.1007/s11270-017-3356-y.
|
Farghali, A.A., Bahgat, M., ElRouby, W.M.A., Khedr, M.H., 2013. Decoration of multi-walled carbon nanotubes (MWCNTs) with different ferrite nanoparticles and its use as an adsorbent. Journal of Nanostructure in Chemistry 3(1), 1-9. https://doi.org/10.1186/2193-8865-3-50.
|
Guimarães, T., Paquini, L.D., Lyrio Ferraz, B.R., Roberto Profeti, L.P., Profeti, D., 2020. Efficient removal of Cu(II) and Cr(III) contaminants from aqueous solutions using marble waste powder. J. Environ. Chem.Eng. 8(4), 103986. https://doi.org/10.1016/j.jece.2020.103972.
|
Guo, C., Ding, L., Jin, X., Zhang, H., Zhang, D., 2021. Application of response surface methodology to optimize chromium(VI) removal from aqueous solution by cassava sludge-based activated carbon. J. Environ. Chem. Eng. 9(1), 104785. https://doi.org/10.1016/j.jece.2020.104785.
|
Hashem, M.A., Hasan, M., Momen, M.A., Payel, S., Nur-A-Tomal, M.S., 2020. Water hyacinth biochar for trivalent chromium adsorption from tannery wastewater. Environmental and Sustainability Indicators 5, 100022. https://doi.org/10.1016/j.indic.2020.100022.
|
Ho, Y.S., 1995. Adsorption of Heavy Metals from Waste Streams by Peat.Ph.D. Dissertation. University of Birmingham, Birmingham.
|
Hong, S.C., 2018. Developing the leather industry in Bangladesh. ADB Briefs 102, 1-8. https://doi.org/10.22617/BRF189645-2.
|
Kanagaraj, J., Panda, R.C., Kumar, M.V., 2020. Trends and advancements in sustainable leather processing: Future directions and challengeseA review.J. Environ. Chem. Eng. 8(5), 104379. https://doi.org/10.1016/j.jece.2020.104379.
|
Kokkinos, E., Proskynitopoulou, V., Zouboulis, A., 2019. Chromium and energy recovery from tannery wastewater treatment waste: Investigation of major mechanisms in the framework of circular economy. J. Environ.Chem. Eng. 7(5), 103307. https://doi.org/10.1016/j.jece.2019.103307.
|
Kumar, A., Jena, H.M., 2017. Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2. Process Saf. Environ. Protect. 109, 63-71. https://doi.org/10.1016/j.psep.2017.03.032.
|
Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskaps Akademiens Handlingar 24, 1-39.
|
Li, H., Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y., Ma, L.Q., 2017.Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072.
|
Mirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., Aghbashlo, M., 2019.Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports 7, 100202. https://doi.org/10.1016/j.biteb.2019.100202.
|
Mohammed, K., Sahu, O., 2019. Recovery of chromium from tannery industry wastewater by membrane separation technology: Health and engineering aspects. Scientific African 4, e00096. https://doi.org/10.1016/j.sciaf.2019.e00096.
|
Nasrollahzadeh, M.S., Hadavifar, M., Ghasemi, S.S., Chamjangali, M.A., 2018. Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions. Appl.Water Sci. 8, 1-12. https://doi.org/10.1007/s13201-018-0750-6.
|
Nigam, M., Rajoriya, S., Singh, S.R., Kumar, P., 2019. Adsorption of Cr(VI)ion from tannery wastewater on tea waste: Kinetics, equilibrium and thermodynamics studies. J. Environ. Chem. Eng. 7(3), 103188. https://doi.org/10.1016/j.jece.2019.103188.
|
Payel, S., Hashem, M.A., Hasan, M.A., 2021. Recycling biochar derived from tannery liming sludge for chromium adsorption in static and dynamic conditions. Environ. Technol. Innovat. 24, 102010. https://doi.org/10.1016/j.eti.2021.102010.
|
Pinakidou, F., Katsikini, M., Varitis, S., Komninou, P., Schuck, G., Paloura, E.C., 2021. Probing the structural role of Cr in stabilized tannery wastes with X-ray absorption fine structure spectroscopy. J. Hazard Mater. 262, 48-54. https://doi.org/10.1016/j.jhazmat.2020.123734.
|
Rafique, M.I., Usman, A.R.A., Ahmad, M., Al-Wabel, M.I., 2021. Immobilization and mitigation of chromium toxicity in aqueous solutions and tannery waste-contaminated soil using biochar and polymer-modified biochar. Chemosphere 266, 129198. https://doi.org/10.1016/j.chemosphere.2020.129198.
|
Rambabu, K., Bharath, G., Banat, F., Show, P.L., 2020. Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal. Environ. Res. 187, 109694. https://doi.org/10.1016/j.envres.2020.109694.
|
Setshedi, K.Z., Bhaumik, M., Onyango, M.S., Maity, A., 2014. Breakthrough studies for Cr(VI) sorption from aqueous solution using exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite. J.Ind. Eng. Chem. 20(4), 2208-2216. https://doi.org/10.1016/j.jiec.2013.09.052.
|
Show, S., Mukherjee, S., Devi, M.S., Karmakar, B., Halder, G., 2021. Linear and non-linear analysis of Ibuprofen riddance efficacy by Terminalia catappa active biochar: Equilibrium, kinetics, safe disposal, reusability and cost estimation. Process Saf. Environ. Protect. 147, 942-964. https://doi.org/10.1016/j.psep.2021.01.024.
|
Srivastava, A.N., Chakma, S., 2022. Bioavailability reduction of heavy metals through dual mode anaerobic Co-landfilling of municipal solid waste and industrial organic sludge. Chem. Eng. J. 439, 135725. https://doi.org/ 10.1016/j.cej.2022.135725.
|
Tadesse, G.L., Guya, T.K., 2017. Impacts of tannery effluent on environments and human health: A review article. Adv. Life Sci. Technol. 7(3), 88-97.
|
Teshale, F., Karthikeyan, R., Sahu, O., 2020. Synthesized bioadsorbent from fish scale for chromium(III) removal. Micron 130, 102817. https://doi.org/ 10.1016/j.micron.2019.102817.
|
Verma, S.K., Sharma, P.C., 2020. NGS-based characterization of microbial diversity and functional profiling of solid tannery waste metagenomes. Genomics 112(4), 2903-2913. https://doi.org/10.1016/j.ygeno.2020.04.002.
|
Wang, D., He, S., Shan, C., Ye, Y., Ma, H., Zhang, X., Zhang, W., Pan, B., 2016. Chromium speciation in tannery effluent after alkaline precipitation:Isolation and characterization. J. Hazard Mater. 316, 169-177. https://doi.org/10.1016/j.jhazmat.2016.05.021.
|
Xu, H., Liu, Y., Liang, H., Gao, C., Qin, J., You, L., Wang, R., Li, J., Yang, S., 2021. Adsorption of Cr(VI) from aqueous solutions using novel activated carbon spheres derived from glucose and sodium dodecylbenzene sulfonate.Sci. Total Environ. 759, 143457. https://doi.org/10.1016/j.scitotenv.2020.143457.
|
Yahya, M.D., Abubakar, H., Obayomi, K.S., Iyaka, Y.A., Suleiman, B., 2020a.Simultaneous and continuous biosorption of Cr and Cu(II) ions from industry tannery effluent using almond shell in a fixed bed column. Results in Engineering 6, 100113. https://doi.org/10.1016/j.rineng.2020.100113.
|
Yahya, M.D., Obayomi, K.S., Abdulkadir, M.B., Iyaka, Y.A., Olugbenga, A.G., 2020b. Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Sci. Eng. 13(3), 202-213.https://doi.org/10.1016/j.wse.2020.09.007.
|
Yang, Y., Ma, H., Chen, X., Zhu, C., Li, X., 2020. Effect of incineration temperature on chromium speciation in real chromium-rich tannery sludge under air atmosphere. Environ. Res. 183, 109159. https://doi.org/10.1016/j.envres.2020.109159.
|
Yoseph, Z., Christopher, J.G., Demessie, B.A., Selvi, A.T., Sreeram, K.J., Rao, J.R., 2020. Extraction of elastin from tannery wastes: A cleaner technology for tannery waste management. J. Clean. Prod. 243, 118471.https://doi.org/10.1016/j.jclepro.2019.118471.
|
Zapana, J.S., Arán, D.S., Bocardo, E.F., Harguinteguy, C.A., 2020. Treatment of tannery wastewater in a pilot scale hybrid constructed wetland system in Arequipa, Peru. Int. J. Environ. Sci. Technol. 17(11), 4419-4430. https://doi.org/10.1007/s13762-020-02797-8.
|
Zeng, H., Zeng, H., Zhang, H., Shahab, A., Zhang, K., Lu, Y., Nabi, I., Naseem, F., Ullah, H., 2021. Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. J. Clean.Prod. 286, 124964. https://doi.org/10.1016/j.jclepro.2020.124964.
|
Zhang, Y.P., Adi, V.S.K., Huang, H.L., Lin, H.P., Huang, Z.H., 2019.Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. J. Ind. Eng.Chem. 76, 240-244. https://doi.org/10.1016/j.jiec.2019.03.046.
|