Citation: | Lei Xu, Lei Jiang, Ye-fei Huang, Qing-wen Ren. 2022: An efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete. Water Science and Engineering, 15(4): 337-347. doi: 10.1016/j.wse.2022.09.002 |
Bažant, Z.P., Tabbara, M.R., Kazemi, M.T., Pijaudier-Cabot, G., 1990.Random particle model for fracture of aggregate or fiber composites. J.Eng. Mech. 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399 (1990)116:8(1686).
|
Cusatis, G., Pelessone, D., Mencarelli, A., 2011. Lattice discrete particle model(LDPM) for failure behavior of concrete. I: Theory. Cement Concr. Compos. 33(9), 881-890. https://doi.org/10.1016/j.cemconcomp.2011.02.011.
|
Cusatis, G., Rezakhani, R., Alnaggar, M., Zhou, X., Pelessone, D., 2014.Multiscale computational models for the simulation of concrete materials and structures. In: Bicanic, N., Mang, H., Meschke, G., de Borst, R. (Eds.), Computational Modelling of Concrete Structures. CRC Press, Boca Raton, pp. 23-38.
|
Gangnant, A., Saliba, J., La Borderie, C., Morel, S., 2016. Modeling of the quasibrittle fracture of concrete at meso-scale: Effect of classes of aggregates on global and local behavior. Cement Concr. Res. 89, 35-44.https://doi.org/10.1016/j.cemconres.2016.07.010.
|
Grassl, P., Jirásek, M., 2010. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. Int. J. Solid Struct. 47(7), 957-968. https://doi.org/10.1016/j.ijsolstr.2009.12.010.
|
Hibbitt Karlsson Sorensen Incorporation (HKSI), 2004. Abaqus User’s Manual, Version 6.5. HKS Incorporation, Providence.Huang, Y.J., Yang, Z.J., Ren, W.Y., Liu, G.H., Zhang, C.Z., 2015. 3D meso-scale fracture modelling and validation of concrete based on insitu X-ray computed tomography images using damage plasticity model. Int. J. Solid Struct. 67, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002.
|
Kim, K., Lim, Y.M., 2011. Simulation of rate dependent fracture in concrete using an irregular lattice model. Cement Concr. Compos. 33(9), 949-955.https://doi.org/10.1016/j.cemconcomp.2011.01.002.
|
Lee, J., Fenves, G.L., 1998. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399 (1998)124:8(892).
|
Li, W.X., Rezakhani, R., Jin, C.G., Zhou, X.W., Cusatis, G., 2017. A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. Int. J. Numer. Anal. Methods GeoMech. 41(14), 1494-1522.https://doi.org/10.1002/nag.2684.
|
Li, X.X., Xu, Y., Chen, S.H., 2016. Computational homogenization of effective permeability in three-phase mesoscale concrete. Construct.Build. Mater. 121, 100-111. https://doi.org/10.1016/j.conbuildmat.2016. 05.141.
|
Lubliner, J., Oliver, J., Oller, S., Oñate, E., 1989. A plastic-damage model for concrete. Int. J. Solid Struct. 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
|
Nguyen, V.P., Stroeven, M., Sluys, L.J., 2012. Multiscale failure modeling of concrete: Micromechanical modeling, discontinuous homogenization and parallel computations. Comput. Methods Appl. Mech. Eng. 201, 139-156.https://doi.org/10.1016/j.cma.2011.09.014.
|
Rezakhani, R., Cusatis, G., 2016. Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials. J. Mech. Phys. Solid. 88, 320-345.https://doi.org/10.1016/j.jmps.2016.01.001.
|
Serra, C., Batista, A.L., Azevedo, N.M., Custódio, J., 2017. Prediction of dam concrete compressive and splitting tensile strength based on wet-screened concrete test results. J. Mater. Civ. Eng. 29(10), 04017188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002012.
|
Shahbeyk, S., Hosseini, M., Yaghoobi, M., 2011. Mesoscale finite element prediction of concrete failure. Comput. Mater. Sci. 50(7), 1973-1990.https://doi.org/10.1016/j.commatsci.2011.01.044.
|
Unger, J.F., Eckardt, S., 2011. Multiscale modeling of concrete. Arch. Comput.Methods Eng. 18(3), 341-393. https://doi.org/10.1007/s11831-011-9063-8.
|
Walraven, J.C., Reinhardt, H.W., 1981. Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading. Heron 26(1A), 26-33.
|
Wang, X.F., Zhang, M.Z., Jivkov, A.P., 2016. Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete. Int.J. Solid Struct. 80, 310-333. https://doi.org/10.1016/j.ijsolstr.2015.11.018.
|
Wang, Z.M., Kwan, A.K.H., Chan, H.C., 1999. Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh.Comput. Struct. 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98) 00177-1.
|
Xu, L., Huang, Y.F., 2017. Effects of voids on concrete tensile fracturing: A mesoscale study. Adv. Mater. Sci. Eng. 7989346. https://doi.org/10.1155/2017/7989346.
|
Xu, L., Jin, Y.M., Jing, S.Z., Liu, J., Huang, Y.F., Zhou, C.Q., 2018. Comparisons of tensile fracturing behaviors of hydraulic fully graded and wetscreened concretes: A mesoscale study. Adv. Mater. Sci. Eng. 6965723.https://doi.org/10.1155/2018/6965723.
|
Xu, Y., Chen, S.H., 2016. A method for modeling the damage behavior of concrete with a three-phase mesostructure. Construct. Build. Mater. 102, 26-38. https://doi.org/10.1016/j.conbuildmat.2015.10.151.
|
Yang, H., Xie, S.Y., Secq, J., Shao, J.F., 2017. Experimental study and modeling of hydromechanical behavior of concrete fracture. Water Sci.Eng. 10(2), 97-106. https://doi.org/10.1016/j.wse.2017.06.002.
|
Zhang, J.H., Wang, J., Chai, L.S., 2017. Factors influencing hysteresis characteristics of concrete dam deformation. Water Sci. Eng. 10(2), 166-174.
|
https://doi.org/10.1016/j.wse.2017.03.007.
|
Zhu, H.H., Wang, Q., Zhuang, X.Y., 2016. A nonlinear semi-concurrent multiscale method for fractures. Int. J. Impact Eng. 87, 65-82. https://doi.org/10.1016/j.ijimpeng.2015.06.022.
|
Zhuang, X.Y., Wang, Q., Zhu, H.H., 2015. A 3D computational homogenization model for porous material and parameters identification. Comput. Mater.
|
Sci. 96, 536-548. https://doi.org/10.1016/j.commatsci.2014.04.059.
|