Volume 15 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Lei Xu, Lei Jiang, Ye-fei Huang, Qing-wen Ren. 2022: An efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete. Water Science and Engineering, 15(4): 337-347. doi: 10.1016/j.wse.2022.09.002
Citation: Lei Xu, Lei Jiang, Ye-fei Huang, Qing-wen Ren. 2022: An efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete. Water Science and Engineering, 15(4): 337-347. doi: 10.1016/j.wse.2022.09.002

An efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete

doi: 10.1016/j.wse.2022.09.002
Funds:

This work was supported by the National Natural Science Foundation of China (Grants No. 51979092, 51739006, and U1765204).

  • Received Date: 2021-12-18
  • Accepted Date: 2022-09-08
  • Rev Recd Date: 2022-07-24
  • Available Online: 2022-11-04
  • Large coarse aggregates used in fully-graded hydraulic concrete necessitate large specimens for numerical modeling. This leads to a high computational cost for mesoscale modeling and thus slows the development of multiscale modeling of hydraulic mass concrete structures. To overcome this obstacle, an efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete was developed based on the concept of the governing mesostructure. The mesostructure was characterized by a critical aggregate size. Coarse aggregates smaller than the critical size were homogenized into mortar matrices. Key issues in mesostructure generation of fully-graded hydraulic concrete are discussed, as is the development of mesoscale finite element modeling methodology. The basic concept and implementation procedures of the proposed approach are also described in detail. The numerical results indicated that the proposed approach not only significantly improves the computational efficiency of mesoscale modeling but also captures the dominant fracturing mechanism at the mesoscale and reproduces reasonable fracture properties at the macroscale. Therefore, the proposed approach can serve as a basis for multiscale fracture modeling of hydraulic mass concrete structures.

     

  • loading
  • Bažant, Z.P., Tabbara, M.R., Kazemi, M.T., Pijaudier-Cabot, G., 1990.Random particle model for fracture of aggregate or fiber composites. J.Eng. Mech. 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399 (1990)116:8(1686).
    Cusatis, G., Pelessone, D., Mencarelli, A., 2011. Lattice discrete particle model(LDPM) for failure behavior of concrete. I: Theory. Cement Concr. Compos. 33(9), 881-890. https://doi.org/10.1016/j.cemconcomp.2011.02.011.
    Cusatis, G., Rezakhani, R., Alnaggar, M., Zhou, X., Pelessone, D., 2014.Multiscale computational models for the simulation of concrete materials and structures. In: Bicanic, N., Mang, H., Meschke, G., de Borst, R. (Eds.), Computational Modelling of Concrete Structures. CRC Press, Boca Raton, pp. 23-38.
    Gangnant, A., Saliba, J., La Borderie, C., Morel, S., 2016. Modeling of the quasibrittle fracture of concrete at meso-scale: Effect of classes of aggregates on global and local behavior. Cement Concr. Res. 89, 35-44.https://doi.org/10.1016/j.cemconres.2016.07.010.
    Grassl, P., Jirásek, M., 2010. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. Int. J. Solid Struct. 47(7), 957-968. https://doi.org/10.1016/j.ijsolstr.2009.12.010.
    Hibbitt Karlsson Sorensen Incorporation (HKSI), 2004. Abaqus User’s Manual, Version 6.5. HKS Incorporation, Providence.Huang, Y.J., Yang, Z.J., Ren, W.Y., Liu, G.H., Zhang, C.Z., 2015. 3D meso-scale fracture modelling and validation of concrete based on insitu X-ray computed tomography images using damage plasticity model. Int. J. Solid Struct. 67, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002.
    Kim, K., Lim, Y.M., 2011. Simulation of rate dependent fracture in concrete using an irregular lattice model. Cement Concr. Compos. 33(9), 949-955.https://doi.org/10.1016/j.cemconcomp.2011.01.002.
    Lee, J., Fenves, G.L., 1998. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399 (1998)124:8(892).
    Li, W.X., Rezakhani, R., Jin, C.G., Zhou, X.W., Cusatis, G., 2017. A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. Int. J. Numer. Anal. Methods GeoMech. 41(14), 1494-1522.https://doi.org/10.1002/nag.2684.
    Li, X.X., Xu, Y., Chen, S.H., 2016. Computational homogenization of effective permeability in three-phase mesoscale concrete. Construct.Build. Mater. 121, 100-111. https://doi.org/10.1016/j.conbuildmat.2016. 05.141.
    Lubliner, J., Oliver, J., Oller, S., Oñate, E., 1989. A plastic-damage model for concrete. Int. J. Solid Struct. 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
    Nguyen, V.P., Stroeven, M., Sluys, L.J., 2012. Multiscale failure modeling of concrete: Micromechanical modeling, discontinuous homogenization and parallel computations. Comput. Methods Appl. Mech. Eng. 201, 139-156.https://doi.org/10.1016/j.cma.2011.09.014.
    Rezakhani, R., Cusatis, G., 2016. Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials. J. Mech. Phys. Solid. 88, 320-345.https://doi.org/10.1016/j.jmps.2016.01.001.
    Serra, C., Batista, A.L., Azevedo, N.M., Custódio, J., 2017. Prediction of dam concrete compressive and splitting tensile strength based on wet-screened concrete test results. J. Mater. Civ. Eng. 29(10), 04017188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002012.
    Shahbeyk, S., Hosseini, M., Yaghoobi, M., 2011. Mesoscale finite element prediction of concrete failure. Comput. Mater. Sci. 50(7), 1973-1990.https://doi.org/10.1016/j.commatsci.2011.01.044.
    Unger, J.F., Eckardt, S., 2011. Multiscale modeling of concrete. Arch. Comput.Methods Eng. 18(3), 341-393. https://doi.org/10.1007/s11831-011-9063-8.
    Walraven, J.C., Reinhardt, H.W., 1981. Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading. Heron 26(1A), 26-33.
    Wang, X.F., Zhang, M.Z., Jivkov, A.P., 2016. Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete. Int.J. Solid Struct. 80, 310-333. https://doi.org/10.1016/j.ijsolstr.2015.11.018.
    Wang, Z.M., Kwan, A.K.H., Chan, H.C., 1999. Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh.Comput. Struct. 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98) 00177-1.
    Xu, L., Huang, Y.F., 2017. Effects of voids on concrete tensile fracturing: A mesoscale study. Adv. Mater. Sci. Eng. 7989346. https://doi.org/10.1155/2017/7989346.
    Xu, L., Jin, Y.M., Jing, S.Z., Liu, J., Huang, Y.F., Zhou, C.Q., 2018. Comparisons of tensile fracturing behaviors of hydraulic fully graded and wetscreened concretes: A mesoscale study. Adv. Mater. Sci. Eng. 6965723.https://doi.org/10.1155/2018/6965723.
    Xu, Y., Chen, S.H., 2016. A method for modeling the damage behavior of concrete with a three-phase mesostructure. Construct. Build. Mater. 102, 26-38. https://doi.org/10.1016/j.conbuildmat.2015.10.151.
    Yang, H., Xie, S.Y., Secq, J., Shao, J.F., 2017. Experimental study and modeling of hydromechanical behavior of concrete fracture. Water Sci.Eng. 10(2), 97-106. https://doi.org/10.1016/j.wse.2017.06.002.
    Zhang, J.H., Wang, J., Chai, L.S., 2017. Factors influencing hysteresis characteristics of concrete dam deformation. Water Sci. Eng. 10(2), 166-174.
    https://doi.org/10.1016/j.wse.2017.03.007.
    Zhu, H.H., Wang, Q., Zhuang, X.Y., 2016. A nonlinear semi-concurrent multiscale method for fractures. Int. J. Impact Eng. 87, 65-82. https://doi.org/10.1016/j.ijimpeng.2015.06.022.
    Zhuang, X.Y., Wang, Q., Zhu, H.H., 2015. A 3D computational homogenization model for porous material and parameters identification. Comput. Mater.
    Sci. 96, 536-548. https://doi.org/10.1016/j.commatsci.2014.04.059.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return