Citation: | Dinesh Chammika Ratnayake, Guna A. Hewa, David J. Kemp, Alaa A. Ahmed. 2022: Application of multi-criteria decision-making methods to identification of soil moisture monitoring sites in an urban catchment in South Australia. Water Science and Engineering, 15(4): 294-304. doi: 10.1016/j.wse.2022.09.003 |
Abijith, D., Saravanan, S., Singh, L., Jennifer, J.J., Saranya, T., Parthasarathy, K.S.S., 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones: A case study from Ponnaniyaru watershed, Tamil Nadu, India. HydroResearch 3, 1-14.https://doi.org/10.1016/j.hydres.2020.02.002.
|
Ahmed, A.A., Shabana, A.R., 2020. Integrating of remote sensing, GIS and geophysical data for recharge potentiality evaluation in Wadi El Tarfa, eastern desert, Egypt. J. Afr. Earth Sci. 172, 103957. https://doi.org/10.1016/j.jafrearsci.2020.103957.
|
Al Garni, H.Z., Awasthi, A., 2017. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl.Energy 206, 1225-1240. https://doi.org/10.1016/j.apenergy.2017.10.024.
|
Anbarasu, S., Brindha, K., Elango, L., 2019. Multi-influencing factor method for delineation of groundwater potential zones using remote sensing and GIS techniques in the western part of Perambalur district, southern India. Earth Sci. Inf. 13, 317-332. https://doi.org/10.1007/s12145-019-00426-8.
|
Benninga, H.-J.F., Carranza, C.D., Pezij, M., van Santen, P., van der Ploeg, M.J., Augustijn, D.C., van der Velde, R., 2018. The Raam regional soil moisture monitoring network in the Netherlands. Earth Syst. Sci. Data 10(1), 61-79. https://doi.org/10.5194/essd-10-61-2018.
|
Brocca, L., Melone, F., Moramarco, T., Morbidelli, R., 2009. Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 148(3-4), 364-374. https://doi.org/10.1016/j.geoderma.2008.11.004.
|
Brocca, L., Tullo, T., Melone, F., Moramarco, T., Morbidelli, R., 2012.Catchment scale soil moisture spatial-temporal variability. J. Hydrol. 422, 63-75. https://doi.org/10.1016/j.jhydrol.2011.12.039.
|
Chabuk, A.J., Al-Ansari, N., Hussain, H.M., Knutsson, S., Pusch, R., 2017.GIS-based assessment of combined AHP and SAW methods for selecting suitable sites for landfill in Al-Musayiab Qadhaa, Babylon, Iraq. Environ.Earth Sci. 76(5), 209. https://doi.org/10.1007/s12665-017-6524-x.
|
Chen, X., Zhang, Z., Chen, X., Shi, P., 2009. The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ. Earth Sci. 59(4), 811-820. https://doi.org/10.1007/s12665-009-0077-6.
|
Chifflard, P., Kranl, J., Strassen, G.Z., Zepp, H., 2018. The significance of soil moisture in forecasting characteristics of flood events. A statistical analysis in two nested catchments. J. Hydrol. Hydromech. 66(1), 1-11. https://doi.org/10.1515/johh-2017-0037.
|
Chilundo, M., Joel, A., Wesström, I., Brito, R., Messing, I., 2018. Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agric. Water Manage. 199, 120-137. https://doi.org/10.1016/j.agwat.2017.12.020.
|
Cosh, M.H., Jackson, T.J., Starks, P., Heathman, G., 2006. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. J. Hydrol. 323(1-4), 168-177. https://doi.org/10.1016/j.jhydrol.2005.08.020.
|
Crow, W.T., Berg, A.A., Cosh, M.H., Loew, A., Mohanty, B.P., Panciera, R., de Rosnay, P., Ryu, D., Walker, J.P., 2012. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 50(2), RG2002. https://doi.org/10.1029/2011RG000372.
|
Dobriyal, P., Qureshi, A., Badola, R., Hussain, S.A., 2012. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 458, 110-117. https://doi.org/10.1016/j.jhydrol.2012.06.021.
|
Edokossi, K., Calabia, A., Jin, S., Molina, I., 2020. GNSS-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications. Remote Sens. 12(4), 614. https://doi.org/ 10.3390/rs12040614.
|
Fagbohun, B.J., 2018. Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environ. Earth Sci. 77(3), 69. https://doi.org/10.1007/s12665-018-7229-5.
|
Fan, Y., Clark, M., Lawrence, D.M., Swenson, S., Band, L., Brantley, S.L., Brooks, P.D., Dietrich, W.E., Flores, A., Grant, G., et al., 2019. Hillslope hydrology in global change research and Earth system modeling. Water Resour. Res. 55(2), 1737-1772. https://doi.org/10.1029/2018WR023903.
|
Gómez-Plaza, A., Martínez-Mena, M., Albaladejo, J., Castillo, V.M., 2001.Factors regulating spatial distribution of soil water content in small semiarid catchments. J. Hydrol. 253(1-4), 211-226. https://doi.org/ 10.1016/S0022-1694(01)00483-8.
|
Hu, W., Chau, H.W., Qiu, W., Si, B., 2017. Environmental controls on the spatial variability of soil water dynamics in a small watershed. J. Hydrol. 551, 47-55. https://doi.org/10.1016/j.jhydrol.2017.05.054.
|
Huang, X., Shi, Z., Zhu, H., Zhang, H., Ai, L., Yin, W., 2016. Soil moisture dynamics within soil profiles and associated environmental controls. Catena 136, 189-196. https://doi.org/10.1016/j.catena.2015.01.014.
|
Kaiser, K.E., McGlynn, B.L., 2018. Nested scales of spatial and temporal variability of soil water content across a semiarid montane catchment. Water Resour. Res. 54(10), 7960-7980. https://doi.org/10.1029/2018WR022591.
|
Karakus, C.B., Demiroglu, D., Coban, A., Ulutas, A., 2020. Evaluation of GISbased multi-criteria decision-making methods for sanitary landfill site selection: The case of Sivas city, Turkey. J. Mater. Cycles Waste Manage. 22(1), 254-272. https://doi.org/10.1007/s10163-019-00935-0.
|
Magesh, N.S., Chandrasekar, N., Soundranayagam, J.P., 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 3(2), 189-196. https://doi.org/10.1016/j.gsf.2011.10.007.
|
Mekki, I., Chebbi, R.Z., Jacob, F., Mechlia, N.B., Prevot, L., Albergel, J., Voltz, M., 2018. Impact of land use on soil water content in a hilly rainfed agrosystem: A case study in the cap Bon peninsula in Tunisia. AGROFOR 3(1), 64-75. https://doi.org/10.7251/AGRENG1801064M.
|
Moran, M.S., Peters-Lidard, C.D., Watts, J.M., McElroy, S., 2004. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 30(5), 805-826. https://doi.org/ 10.5589/m04-043.
|
Nan, G., Wang, N., Jiao, L., Zhu, Y., Sun, H., 2019. A new exploration for accurately quantifying the effect of afforestation on soil moisture: A case study of artificial Robinia pseudoacacia in the Loess Plateau (China). For.Ecol. Manage. 433, 459-466. https://doi.org/10.1016/j.foreco.2018.10.029.
|
Nasir, M.J., Khan, S., Zahid, H., Khan, A., 2018. Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: A study of district Swat, Khyber Pakhtunkhwa, Pakistan. Environ. Earth Sci. 77(10), 367. https://doi.org/10.1007/s12665-018-7522-3.
|
Neissi, L., Albaji, M., Nasab, S.B., 2020. Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran. Agric.
|
Water Manage. 231, 106004. https://doi.org/10.1016/j.agwat.2020.106004.
|
Nganga, W.B., Ng'etich, K.O., Macharia, M.J., Kiboi, N.M., Adamtey, N., Ngetich, K.F., 2020. Multi-influencing-factors’ evaluation for organicbased soil fertility technologies out-scaling in Upper Tana Catchment in Kenya. Sci. Afr. 7, e00231. https://doi.org/10.1016/j.sciaf.2019.e00231.
|
Renzullo, L.J., van Dijk, A., Perraud, J.-M., Collins, D., Henderson, B., Jin, H., Smith, A.B., McJannet, D.L., 2014. Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment. J. Hydrol. 519, 2747-2762. https://doi.org/10.1016/j.jhydrol.2014.08.008.
|
Rudiger, C., Hancock, G., Hemakumara, H.M., Jacobs, B., Kalma, J.D., Martinez, C., Thyer, M., Walker, J.P., Wells, T., Willgoose, G.R., 2007.Goulburn River experimental catchment data set. Water Resour. Res. 43(10), W10403. https://doi.org/10.1029/2006WR005837.
|
Saaty, T.L., 1988. What is the analytic hierarchy process? In: Mathematical Models for Decision Support. Springer Berlin, Heidelberg, pp. 109-121.
|
Senanayake, I.P., Dissanayake, D.M.D.O.K., Mayadunna, B.B., Weerasekera, W.L., 2016. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci.Front. 7(1), 115-124. https://doi.org/10.1016/j.gsf.2015.03.002.
|
Senapati, U., Das, T.K., 2020. Assessment of potential land degradation in Akarsa Watershed, West Bengal, using GIS and multi-influencing factor technique. In: Shit, P.K., Pourghasemi, H.R., Bhunia, G.S. (Eds.), Gully Erosion Studies from India and Surrounding Regions. Springer, Cham, pp. 187-205. https://doi.org/10.1007/978-3-030-23243-6.
|
Smith, A., Walker, J., Western, A., Young, R., Ellett, K., Pipunic, R., Grayson, R.B., Siriwardena, L., Chiew, F.H.S., Richter, H., 2012. The Murrumbidgee soil moisture monitoring network data set. Water Resour.Res. 48(7). https://doi.org/10.1029/2012WR011976.
|
Stafford, J., 1988. Remote, non-contact and in-situ measurement of soil moisture content: A review. J. Agric. Eng. Res. 41(3), 151-172. https://doi.org/10.1016/0021-8634(88)90175-8.
|
Su, S.L., Singh, D., Baghini, M.S., 2014. A critical review of soil moisture measurement. Measurement 54, 92-105. https://doi.org/10.1016/j.measurement.2014.04.007.
|
Suo, L., Huang, M., Zhang, Y., Duan, L., Shan, Y., 2018. Soil moisture dynamics and dominant controls at different spatial scales over semiarid and semi-humid areas. J. Hydrol. 562, 635-647. https://doi.org/10.1016/j.jhydrol.2018.05.036.
|
Taheri, K., Missimer, T.M., Taheri,M., Moayedi,H., Pour, F.M., 2019. Critical zone assessments of an alluvial aquifer system using the multi-influencing factor(MIF) and analytical hierarchy process (AHP) models in western Iran. Nat.Resour. Res. 29, 1163-1191. https://doi.org/10.1007/s11053-019-09516-2.
|
Tahri, M., Hakdaoui, M., Maanan, M., 2015. The evaluation of solar farm locations applying geographic information system and multi-criteria decision-making methods: Case study in southern Morocco. Renew. Sustainable Energy Rev. 51, 1354-1362. https://doi.org/10.1016/j.rser.2015.07.054.
|
Thapa, R., Gupta, S., Guin, S., Kaur, H., 2017. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Appl. Water Sci. 7(7), 4117-4131.https://doi.org/10.1007/s13201-017-0571-z.
|
Velasquez, M., Hester, P.T., 2013. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10(2), 56-66.
|
Walker, J.P., Willgoose, G.R., Kalma, J.D., 2004. In situ measurement of soil moisture: A comparison of techniques. J. Hydrol. 293(1-4), 85-99.https://doi.org/10.1016/j.jhydrol.2004.01.008.
|
Wang, Y., Shao, M., Zhu, Y., Liu, Z., 2011. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 151(4), 437-448. https://doi.org/10.1016/j.agrformet.2010.11.016.
|
Wei, J., Su, H., Yang, Z.-L., 2016. Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Clim. Dyn. 46(1-2), 467-481. https://doi.org/10.1007/s00382-015-2593-2.
|
Yap, J.Y.L., Ho, C.C., Ting, C.-Y., 2019. A systematic review of the applications of multi-criteria decision-making methods in site selection problems. Built. Environ. Proj. Asset. Manage. 9(4), 548-563. https://doi.org/10.1108/BEPAM-05-2018-0078.
|
Zghibi, A., Mirchi, A., Msaddek, M.H., Merzougui, A., Zouhri, L., Taupin, J.-D., Chekirbane, A., Chenini, I., Tarhouni, J., 2020. Using analytical hierarchy process and multi-influencing factors to map groundwater recharge zones in a semi-arid mediterranean coastal aquifer. Water 12(9), 2525.https://doi.org/10.3390/w12092525.
|
Zhu, Q., Nie, X., Zhou, X., Liao, K., Li, H., 2014. Soil moisture response to rainfall at different topographic positions along a mixed land-use hillslope. Catena 119, 61-70. https://doi.org/10.1016/j.catena.2014.03.010.
|