Volume 15 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Dinesh Chammika Ratnayake, Guna A. Hewa, David J. Kemp, Alaa A. Ahmed. 2022: Application of multi-criteria decision-making methods to identification of soil moisture monitoring sites in an urban catchment in South Australia. Water Science and Engineering, 15(4): 294-304. doi: 10.1016/j.wse.2022.09.003
Citation: Dinesh Chammika Ratnayake, Guna A. Hewa, David J. Kemp, Alaa A. Ahmed. 2022: Application of multi-criteria decision-making methods to identification of soil moisture monitoring sites in an urban catchment in South Australia. Water Science and Engineering, 15(4): 294-304. doi: 10.1016/j.wse.2022.09.003

Application of multi-criteria decision-making methods to identification of soil moisture monitoring sites in an urban catchment in South Australia

doi: 10.1016/j.wse.2022.09.003
  • Received Date: 2020-12-15
  • Accepted Date: 2022-09-13
  • Rev Recd Date: 2021-07-31
  • Available Online: 2022-11-04
  • When choosing sites for monitoring of soil moisture for hydrological purposes, a suitable process that considers the factors influencing soil moisture level should be followed. In this study, two multi-criteria decision-making (MCDM) methods, the multi-influencing factor (MIF) method and the analytical hierarchy process (AHP) method, were used to identify the optimal soil moisture monitoring (SMM) sites in the Dry Creek Catchment in South Australia. The most representative areas for nine SMM sites were obtained using the MIF method, considering the factors of rainfall, soil type, land use, catchment slope, elevation, and upslope accumulated area (UAA). The AHP method was used to select the optimal sites using the site-specific criteria. 30.3% of the catchment area in the Australian Water Resources Assessment Landscape (AWRA-L) Grid_DC2 can be considered acceptable as representative area with the MIF method. Four potential sites were evaluated for each AWRA-L grid using the relative weights of the site-specific criteria with the AHP method. The Grid_DC2 required two sites that had the highest overall weight chosen with the AHP analysis. The procedure was repeated for the remaining four AWRA-L grids within the study area to select the required SMM sites.

     

  • loading
  • Abijith, D., Saravanan, S., Singh, L., Jennifer, J.J., Saranya, T., Parthasarathy, K.S.S., 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones: A case study from Ponnaniyaru watershed, Tamil Nadu, India. HydroResearch 3, 1-14.https://doi.org/10.1016/j.hydres.2020.02.002.
    Ahmed, A.A., Shabana, A.R., 2020. Integrating of remote sensing, GIS and geophysical data for recharge potentiality evaluation in Wadi El Tarfa, eastern desert, Egypt. J. Afr. Earth Sci. 172, 103957. https://doi.org/10.1016/j.jafrearsci.2020.103957.
    Al Garni, H.Z., Awasthi, A., 2017. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl.Energy 206, 1225-1240. https://doi.org/10.1016/j.apenergy.2017.10.024.
    Anbarasu, S., Brindha, K., Elango, L., 2019. Multi-influencing factor method for delineation of groundwater potential zones using remote sensing and GIS techniques in the western part of Perambalur district, southern India. Earth Sci. Inf. 13, 317-332. https://doi.org/10.1007/s12145-019-00426-8.
    Benninga, H.-J.F., Carranza, C.D., Pezij, M., van Santen, P., van der Ploeg, M.J., Augustijn, D.C., van der Velde, R., 2018. The Raam regional soil moisture monitoring network in the Netherlands. Earth Syst. Sci. Data 10(1), 61-79. https://doi.org/10.5194/essd-10-61-2018.
    Brocca, L., Melone, F., Moramarco, T., Morbidelli, R., 2009. Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 148(3-4), 364-374. https://doi.org/10.1016/j.geoderma.2008.11.004.
    Brocca, L., Tullo, T., Melone, F., Moramarco, T., Morbidelli, R., 2012.Catchment scale soil moisture spatial-temporal variability. J. Hydrol. 422, 63-75. https://doi.org/10.1016/j.jhydrol.2011.12.039.
    Chabuk, A.J., Al-Ansari, N., Hussain, H.M., Knutsson, S., Pusch, R., 2017.GIS-based assessment of combined AHP and SAW methods for selecting suitable sites for landfill in Al-Musayiab Qadhaa, Babylon, Iraq. Environ.Earth Sci. 76(5), 209. https://doi.org/10.1007/s12665-017-6524-x.
    Chen, X., Zhang, Z., Chen, X., Shi, P., 2009. The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ. Earth Sci. 59(4), 811-820. https://doi.org/10.1007/s12665-009-0077-6.
    Chifflard, P., Kranl, J., Strassen, G.Z., Zepp, H., 2018. The significance of soil moisture in forecasting characteristics of flood events. A statistical analysis in two nested catchments. J. Hydrol. Hydromech. 66(1), 1-11. https://doi.org/10.1515/johh-2017-0037.
    Chilundo, M., Joel, A., Wesström, I., Brito, R., Messing, I., 2018. Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agric. Water Manage. 199, 120-137. https://doi.org/10.1016/j.agwat.2017.12.020.
    Cosh, M.H., Jackson, T.J., Starks, P., Heathman, G., 2006. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. J. Hydrol. 323(1-4), 168-177. https://doi.org/10.1016/j.jhydrol.2005.08.020.
    Crow, W.T., Berg, A.A., Cosh, M.H., Loew, A., Mohanty, B.P., Panciera, R., de Rosnay, P., Ryu, D., Walker, J.P., 2012. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 50(2), RG2002. https://doi.org/10.1029/2011RG000372.
    Dobriyal, P., Qureshi, A., Badola, R., Hussain, S.A., 2012. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 458, 110-117. https://doi.org/10.1016/j.jhydrol.2012.06.021.
    Edokossi, K., Calabia, A., Jin, S., Molina, I., 2020. GNSS-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications. Remote Sens. 12(4), 614. https://doi.org/ 10.3390/rs12040614.
    Fagbohun, B.J., 2018. Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environ. Earth Sci. 77(3), 69. https://doi.org/10.1007/s12665-018-7229-5.
    Fan, Y., Clark, M., Lawrence, D.M., Swenson, S., Band, L., Brantley, S.L., Brooks, P.D., Dietrich, W.E., Flores, A., Grant, G., et al., 2019. Hillslope hydrology in global change research and Earth system modeling. Water Resour. Res. 55(2), 1737-1772. https://doi.org/10.1029/2018WR023903.
    Gómez-Plaza, A., Martínez-Mena, M., Albaladejo, J., Castillo, V.M., 2001.Factors regulating spatial distribution of soil water content in small semiarid catchments. J. Hydrol. 253(1-4), 211-226. https://doi.org/ 10.1016/S0022-1694(01)00483-8.
    Hu, W., Chau, H.W., Qiu, W., Si, B., 2017. Environmental controls on the spatial variability of soil water dynamics in a small watershed. J. Hydrol. 551, 47-55. https://doi.org/10.1016/j.jhydrol.2017.05.054.
    Huang, X., Shi, Z., Zhu, H., Zhang, H., Ai, L., Yin, W., 2016. Soil moisture dynamics within soil profiles and associated environmental controls. Catena 136, 189-196. https://doi.org/10.1016/j.catena.2015.01.014.
    Kaiser, K.E., McGlynn, B.L., 2018. Nested scales of spatial and temporal variability of soil water content across a semiarid montane catchment. Water Resour. Res. 54(10), 7960-7980. https://doi.org/10.1029/2018WR022591.
    Karakus, C.B., Demiroglu, D., Coban, A., Ulutas, A., 2020. Evaluation of GISbased multi-criteria decision-making methods for sanitary landfill site selection: The case of Sivas city, Turkey. J. Mater. Cycles Waste Manage. 22(1), 254-272. https://doi.org/10.1007/s10163-019-00935-0.
    Magesh, N.S., Chandrasekar, N., Soundranayagam, J.P., 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 3(2), 189-196. https://doi.org/10.1016/j.gsf.2011.10.007.
    Mekki, I., Chebbi, R.Z., Jacob, F., Mechlia, N.B., Prevot, L., Albergel, J., Voltz, M., 2018. Impact of land use on soil water content in a hilly rainfed agrosystem: A case study in the cap Bon peninsula in Tunisia. AGROFOR 3(1), 64-75. https://doi.org/10.7251/AGRENG1801064M.
    Moran, M.S., Peters-Lidard, C.D., Watts, J.M., McElroy, S., 2004. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 30(5), 805-826. https://doi.org/ 10.5589/m04-043.
    Nan, G., Wang, N., Jiao, L., Zhu, Y., Sun, H., 2019. A new exploration for accurately quantifying the effect of afforestation on soil moisture: A case study of artificial Robinia pseudoacacia in the Loess Plateau (China). For.Ecol. Manage. 433, 459-466. https://doi.org/10.1016/j.foreco.2018.10.029.
    Nasir, M.J., Khan, S., Zahid, H., Khan, A., 2018. Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: A study of district Swat, Khyber Pakhtunkhwa, Pakistan. Environ. Earth Sci. 77(10), 367. https://doi.org/10.1007/s12665-018-7522-3.
    Neissi, L., Albaji, M., Nasab, S.B., 2020. Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran. Agric.
    Water Manage. 231, 106004. https://doi.org/10.1016/j.agwat.2020.106004.
    Nganga, W.B., Ng'etich, K.O., Macharia, M.J., Kiboi, N.M., Adamtey, N., Ngetich, K.F., 2020. Multi-influencing-factors’ evaluation for organicbased soil fertility technologies out-scaling in Upper Tana Catchment in Kenya. Sci. Afr. 7, e00231. https://doi.org/10.1016/j.sciaf.2019.e00231.
    Renzullo, L.J., van Dijk, A., Perraud, J.-M., Collins, D., Henderson, B., Jin, H., Smith, A.B., McJannet, D.L., 2014. Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment. J. Hydrol. 519, 2747-2762. https://doi.org/10.1016/j.jhydrol.2014.08.008.
    Rudiger, C., Hancock, G., Hemakumara, H.M., Jacobs, B., Kalma, J.D., Martinez, C., Thyer, M., Walker, J.P., Wells, T., Willgoose, G.R., 2007.Goulburn River experimental catchment data set. Water Resour. Res. 43(10), W10403. https://doi.org/10.1029/2006WR005837.
    Saaty, T.L., 1988. What is the analytic hierarchy process? In: Mathematical Models for Decision Support. Springer Berlin, Heidelberg, pp. 109-121.
    Senanayake, I.P., Dissanayake, D.M.D.O.K., Mayadunna, B.B., Weerasekera, W.L., 2016. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci.Front. 7(1), 115-124. https://doi.org/10.1016/j.gsf.2015.03.002.
    Senapati, U., Das, T.K., 2020. Assessment of potential land degradation in Akarsa Watershed, West Bengal, using GIS and multi-influencing factor technique. In: Shit, P.K., Pourghasemi, H.R., Bhunia, G.S. (Eds.), Gully Erosion Studies from India and Surrounding Regions. Springer, Cham, pp. 187-205. https://doi.org/10.1007/978-3-030-23243-6.
    Smith, A., Walker, J., Western, A., Young, R., Ellett, K., Pipunic, R., Grayson, R.B., Siriwardena, L., Chiew, F.H.S., Richter, H., 2012. The Murrumbidgee soil moisture monitoring network data set. Water Resour.Res. 48(7). https://doi.org/10.1029/2012WR011976.
    Stafford, J., 1988. Remote, non-contact and in-situ measurement of soil moisture content: A review. J. Agric. Eng. Res. 41(3), 151-172. https://doi.org/10.1016/0021-8634(88)90175-8.
    Su, S.L., Singh, D., Baghini, M.S., 2014. A critical review of soil moisture measurement. Measurement 54, 92-105. https://doi.org/10.1016/j.measurement.2014.04.007.
    Suo, L., Huang, M., Zhang, Y., Duan, L., Shan, Y., 2018. Soil moisture dynamics and dominant controls at different spatial scales over semiarid and semi-humid areas. J. Hydrol. 562, 635-647. https://doi.org/10.1016/j.jhydrol.2018.05.036.
    Taheri, K., Missimer, T.M., Taheri,M., Moayedi,H., Pour, F.M., 2019. Critical zone assessments of an alluvial aquifer system using the multi-influencing factor(MIF) and analytical hierarchy process (AHP) models in western Iran. Nat.Resour. Res. 29, 1163-1191. https://doi.org/10.1007/s11053-019-09516-2.
    Tahri, M., Hakdaoui, M., Maanan, M., 2015. The evaluation of solar farm locations applying geographic information system and multi-criteria decision-making methods: Case study in southern Morocco. Renew. Sustainable Energy Rev. 51, 1354-1362. https://doi.org/10.1016/j.rser.2015.07.054.
    Thapa, R., Gupta, S., Guin, S., Kaur, H., 2017. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Appl. Water Sci. 7(7), 4117-4131.https://doi.org/10.1007/s13201-017-0571-z.
    Velasquez, M., Hester, P.T., 2013. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10(2), 56-66.
    Walker, J.P., Willgoose, G.R., Kalma, J.D., 2004. In situ measurement of soil moisture: A comparison of techniques. J. Hydrol. 293(1-4), 85-99.https://doi.org/10.1016/j.jhydrol.2004.01.008.
    Wang, Y., Shao, M., Zhu, Y., Liu, Z., 2011. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 151(4), 437-448. https://doi.org/10.1016/j.agrformet.2010.11.016.
    Wei, J., Su, H., Yang, Z.-L., 2016. Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Clim. Dyn. 46(1-2), 467-481. https://doi.org/10.1007/s00382-015-2593-2.
    Yap, J.Y.L., Ho, C.C., Ting, C.-Y., 2019. A systematic review of the applications of multi-criteria decision-making methods in site selection problems. Built. Environ. Proj. Asset. Manage. 9(4), 548-563. https://doi.org/10.1108/BEPAM-05-2018-0078.
    Zghibi, A., Mirchi, A., Msaddek, M.H., Merzougui, A., Zouhri, L., Taupin, J.-D., Chekirbane, A., Chenini, I., Tarhouni, J., 2020. Using analytical hierarchy process and multi-influencing factors to map groundwater recharge zones in a semi-arid mediterranean coastal aquifer. Water 12(9), 2525.https://doi.org/10.3390/w12092525.
    Zhu, Q., Nie, X., Zhou, X., Liao, K., Li, H., 2014. Soil moisture response to rainfall at different topographic positions along a mixed land-use hillslope. Catena 119, 61-70. https://doi.org/10.1016/j.catena.2014.03.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (2631) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return