Citation: | Deepak Singh, Alok Kumar Mishra, Sridhar Patra, Sankar Mariappan, Nisha Singh, Saswat Kumar Kar. 2023: Spatial variability of soil hydraulic and physical properties in erosive sloping agricultural fields. Water Science and Engineering, 16(1): 57-66. doi: 10.1016/j.wse.2022.10.001 |
Ankeny, M.D., Ahmed, M., Kaspar, T.C., Horton, R., 1991. Simple field method for determining unsaturated hydraulic conductivity. Soil Sci.Soc. Am. J. 55, 467. https://doi.org/10.2136/sssaj1991.036159950055 00020028x.
|
Biddoccu, M., Ferraris, S., Opsi, F., Cavallo, E., 2016. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-west Italy). Soil Tillage Res. 155, 176-189.https://doi.org/10.1016/j.still.2015.07.005.
|
Biddoccu, M., Ferraris, S., Pitacco, A., Cavallo, E., 2017. Temporal variability of soil management effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North-West Italy. Soil Tillage Res. 165, 46-58. https://doi.org/10.1016/j.still.2016.07.017.
|
Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Klute, A. (Ed.), Methods of Soil Analysis, Part I. ASA Monograph No. 9. Lewis Publishers, Madison.
|
Bodhinayake, W., Si, B.C., 2004. Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrol. Process. 18, 2835-2850. https://doi.org/10.1002/hyp.1497.
|
Bodhinayake, W., Si, B.C., Xiao, C., 2004. New method for determining water-conducting macro- and mesoporosity from tension infiltrometer. Soil Sci. Soc. Am. J. 68, 760-769. https://doi.org/10.2136/sssaj2004.7600.
|
Bodner, G., Loiskandl, W., Buchan, G., Kaul, H.P., 2008. Natural and management-induced dynamics of hydraulic conductivity along a covercropped field. Geoderma 146, 317-325. https://doi.org/10.1016/j.geoderma.2008.06.012.
|
Buczko, U., Bens, O., Hüttl, R.F., 2006. Tillage effects on hydraulic properties and macroporosity in silty and sandy soils. Soil Sci. Soc. Am. J. 70(6), 1998-2007. https://doi.org/10.2136/sssaj2006.0046.
|
Cameira, M.R., Fernando, R.M., Pereira, L.S., 2003. Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil Tillage Res. 70, 131-140. https://doi.org/10.1016/S0167-1987(02)00154-X.
|
Carretta, L., Tarolli, P., Cardinali, A., Nasta, P., Romano, N., Masin, R., 2021.Evaluation of runoff and soil erosion under conventional tillage and no-till management: A case study in northeast Italy. Catena 197, 104972. https://doi.org/10.1016/j.catena.2020.104972.
|
Cavalieri, K.M.V., da Silva, A.P., Tormena, C.A., Le~ao, T.P., Dexter, A.R., Håkansson, I., 2009. Long-term effects of no-tillage on dynamic soil physical properties in a Rhodic Ferrasol in Paran a, Brazil. Soil Tillage Res. 103, 158-164. https://doi.org/10.1016/j.still.2008.10.014.
|
Çerçio glu, M., Anderson, S.H., Udawatta, R.P., Alagele, S., 2019. Effect of cover crop management on soil hydraulic properties. Geoderma 343, 247-253. https://doi.org/10.1016/j.geoderma.2019.02.027.
|
Chandrasekhar, P., Kreiselmeier, J., Schwen, A., Weninger, T., Julich, S., Feger, K.H., Schw€arzel, K., 2018. Why we should include soil structural dynamics of agricultural soils in hydrological models. Water 10(12), 1862.https://doi.org/10.3390/w10121862.
|
Chandrasekhar, P., Kreiselmeier, J., Schwen, A., Weninger, T., Julich, S., Feger, K.H., Schw€arzel, K., 2019. Modeling the evolution of soil structural pore space in agricultural soils following tillage. Geoderma 353, 401-414.https://doi.org/10.1016/j.geoderma.2019.07.017.
|
Changere, A., Lal, R., 1997. Slope position and erosional effects on soil properties and corn production on a miamian soil in central Ohio. J.Sustain. Agric. 11(1), 5-21. https://doi.org/10.1300/J064v11n01_03.
|
Chen, H., Liu, J., Zhang, W., Wang, K., 2012. Soil hydraulic properties on the steep karst hillslopes in northwest Guangxi, China. Environ. Earth Sci. 66, 371-379. https://doi.org/10.1007/s12665-011-1246-y.
|
Daraghmeh, O.A., Jensen, J.R., Petersen, C.T., 2008. Near-saturated hydraulic properties in the surface layer of a sandy loam soil under conventional and reduced tillage. Soil Sci. Soc. Am. J. 72, 1728-1737. https://doi.org/10.2136/sssaj2007.0292.
|
Dörner, J., Dec, D., Peng, X., Horn, R., 2010. Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions. Geoderma 159, 189-197. https://doi.org/10.1016/j.geoderma.2010.07.011, 1-2.
|
Gardner, W.R., 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85, 228-232. https://doi.org/10.1097/00010694-195804000-00006.
|
Hu, W., Ming, A.S., Quan, J.W., Fan, J., Reichardt, K., 2008. Spatial variability of soil hydraulic properties on a steep slope in the loess plateau of China. Sci. Agric. 65, 268-276. https://doi.org/10.1590/S0103-90162008000300007.
|
Kreiselmeier, J., Chandrasekhar, P., Weninger, T., Schwen, A., Julich, S., Feger, K.H., Schw€arzel, K., 2020. Temporal variations of the hydraulic conductivity characteristic under conventional and conservation tillage.Geoderma 362, 114127. https://doi.org/10.1016/j.geoderma.2019.114127.
|
Lin, J., Zhu, G., Wei, J., Jiang, F., Wang, M., Huang, Y., 2018. Mulching effects on erosion from steep slopes and sediment particle size distributions of gully colluvial deposits. Catena 160, 57-67. https://doi.org/10.1016/j.catena.2017.09.003.
|
Lin, L., Chen, J., 2015. The effect of conservation practices in sloped croplands on soil hydraulic properties and root-zone moisture dynamics.Hydrol. Process. 29, 2079-2088. https://doi.org/10.1002/hyp.10348.
|
Ma, B., Liu, G., Ma, F., Li, Z., Wu, F., 2019. Effects of crop-slope interaction on slope runoff and erosion in the Loess Plateau. Acta Agric. Scand. Sect.B Soil Plant Sci 69, 12-25. https://doi.org/10.1080/09064710.2018.1488988.
|
Madar asz, B., Jakab, G., Szalai, Z., Juhos, K., Kotrocz o, Z., T oth, A., Lad anyi, M., 2021. Long-term effects of conservation tillage on soil erosion in central Europe: A random forest-based approach. Soil Tillage Res. 209, 104959. https://doi.org/10.1016/j.still.2021.104959.
|
Martínez, E., Fuentes, J.P., Silva, P., Valle, S., Acevedo, E., 2008. Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil Tillage Res. 99(2), 232-244. https://doi.org/10.1016/j.still.2008.02.001.
|
Patra, S., Julich, S., Feger, K.H., Jat, M.L., Jat, H., Sharma, P.C., Schw€arzel, K., 2019. Soil hydraulic response to conservation agriculture under irrigated intensive cereal-based cropping systems in a semiarid climate. Soil Tillage Res. 192, 151-163. https://doi.org/10.1016/j.still.2019.05.003.
|
Patra, S., Kaushal, R., Singh, D., Kumar, R., Gadedjisso-Tossou, A., Durai, J., 2021. Surface soil hydraulic conductivity and macro-pore characteristics as affected by four bamboo species in North-Western Himalaya, India.Ecohydrol. Hydrobiol. 22(1), 188-196. https://doi.org/10.1016/J.ECOHYD.2021.08.012.
|
Peng, X., Zhu, Q.H., Xie, Z.B., Darboux, F., Holden, N.M., 2016. The impact of manure, straw and biochar amendments on aggregation and erosion in a hillslope Ultisol. Catena 138, 30-37. https://doi.org/10.1016/j.catena.2015.11.008.
|
Piper, C.S., 1966. Soil and Plant Analysis, the Fourth Edition. Inter Science Publishers, New York.Raczkowski, C.W., Mueller, J.P., Busscher, W.J., Bell, M.C., McGraw, M.L., 2012. Soil physical properties of agricultural systems in a large-scale study. Soil Tillage Res. 119, 50-59. https://doi.org/10.1016/j.still.2011.12.006.
|
Raoof, M., 2011. Effect of land slope on some soil physical and hydraulic properties. In: Proceedings of 2011 International Conference on New Technology of Agricultural Engineering. IEEE, Zibo, pp. 62-66. https://doi.org/10.1109/ICAE.2011.5943749.
|
Reynolds, W.D., Elrick, D.E., 1991. Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci. Soc. Am. J. 55, 633-639. https://doi.org/10.2136/sssaj1991.03615995005500030001x.
|
Schlüter, S., Albrecht, L., Schw€arzel, K., Kreiselmeier, J., 2020. Long-term effects of conventional tillage and no-tillage on saturated and near-saturated hydraulic conductivity - Can their prediction be improved by pore metrics obtained with X-ray CT? Geoderma 361, 114082. https://doi.org/10.1016/j.geoderma.2019.114082.
|
Schwen, A., Bodner, G., Scholl, P., Buchan, G.D., Loiskandl, W., 2011.Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil Tillage Res. 113, 89-98. https://doi.org/10.1016/j.still.2011.02.005.
|
Singh, D., Mishra, A.K., Patra, S., Mariappan, S., Singh, N., 2021a. Nearsaturated soil hydraulic conductivity and pore characteristics as influenced by conventional and conservation tillage practices in North-West Himalayan region, India. Int. Soil Water Conserv. Res. 9(2), 249-259. https://doi.org/10.1016/j.iswcr.2021.01.001.
|
Singh, D., Mishra, A.K., Sherring, A., Thomas, A., Kumar, M., Patra, S., Mariappan, S., 2021b. Soil pore and hydraulic conductivity relationship under different tillage practices in a maize-wheat cropping system. Indian Journal of Soil Conservation 49, 139-144.
|
Singh, D., Patra, S., Mishra, A.K., Mariappan, S., Singh, N., 2022. Temporal variation of saturated and near-saturated soil hydraulic conductivity and water-conducting macroporosity in a maize-wheat rotation under conventional and conservation tillage practices. Land Degrad. Dev. 33(13), 2208-2219. https://doi.org/10.1002/ldr.4251.
|
Sun, Y., Zeng, Y., Shi, Q., Pan, X., Huang, S., 2015. No-tillage controls on runoff: A meta-analysis. Soil Tillage Res. 153, 1-6. https://doi.org/10.1016/j.still.2015.04.007.
|
Villarreal, R., Lozano, L.A., Salazar, M.P., Bellora, G.L., Melani, E.M., Polich, N., Soracco, C.G., 2020. Pore system configuration and hydraulic properties. Temporal variation during the crop cycle in different soil types of Argentinean Pampas Region. Soil Tillage Res. 198, 104528. https://doi.org/10.1016/j.still.2019.104528.
|
Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29-38. https://doi.org/10.1097/00010694-193401000-00003.
|
Wang, L., Dalabay, N., Lu, P., Wu, F., 2017. Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall. Soil Tillage Res. 166, 147-156. https://doi.org/10.1016/j.still.2016.09.007.
|
Weninger, T., Kreiselmeier, J., Chandrasekhar, P., Julich, S., Feger, K.H., Schw€arzel, K., Bodner, G., Schwen, A., 2019. Effects of tillage intensity on pore system and physical quality of silt-textured soils detected by multiple methods. Soil Res. 57, 703-711. https://doi.org/10.1071/SR18347.
|
Wooding, R.A., 1968. Steady infiltration from a shallow circular pond.Water Resour. Res. 4, 1259-1273. https://doi.org/10.1029/WR023i004p00733.
|
Yadav, D., Vishwakarma, A.K., Sharma, N.K., Biswas, A.K., Ojasvi, P.R., Kumar, D., Kumawat, A., Singh, D., 2021. Sustaining the properties of black soil in Central India through crop residue management in a conservation-agriculture-based soybean-wheat system. Land Degrad. Dev. 32, 2906-2921. https://doi.org/10.1002/ldr.3891.
|
Yoder, R.E., 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses (1). Soil Sci. Soc. Am. J. 17.https://doi.org/10.2136/sssaj1936.036159950B1720010046x, 165-165.
|
Zhang, G.S., Chan, K.Y., Oates, A., Heenan, D.P., Huang, G.B., 2007. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res. 92, 122-128. https://doi.org/10.1016/j.still.2006.01.006.
|