Citation: | Heng-zhi Jiang, Yong-peng Ji, Ming-liang Zhang. 2023: Modeling impact of culture facilities on hydrodynamics and solute transport in marine aquaculture waters of North Yellow Sea. Water Science and Engineering, 16(1): 26-35. doi: 10.1016/j.wse.2022.10.005 |
Ai, Y.D., Liu, M.Y., Huai, W.X., 2020. Numerical investigation of flow with floating vegetation island. J. Hydrodyn. 32(1), 31-43. https://doi.org/10.1007/s42241-020-0004-6.
|
Ali, A., Thiem, Ø., Berntsen, J., 2011. Numerical modelling of organic waste dispersion from fjord located fish farms. Ocean Dynam. 61, 977-989.https://doi.org/10.1007/s10236-011-0393-8.
|
Blanco, J., Zapata, M., Moroño, A., 1996. Some aspects of the water flow through mussel rafts. Sci. Mar. 60(2-3), 275-282. https://doi.org/10.1016/ 0025-326X(96)00007-0.
|
Cheng, W.W., Sun, Z.C., Liang, S.X., 2019. Numerical simulation of flow through suspended and submerged canopy. Adv. Water Resour. 127, 109-119. https://doi.org/10.1016/j.advwatres.2019.01.008.
|
Cornejo, P., Sepúlveda, H.H., Guti errez, M.H., Olivares, G., 2014. Numerical studies on the hydrodynamic effects of a salmon farm in an idealized environment. Aquaculture 430, 195-206. https://doi.org/10.1016/j.aquaculture.2014.04.015.
|
Delaux, S., Stevens, C.L., Popinet, S., 2011. High-resolution computational fluid dynamics modeling of suspended shellfish structures. Environ. Fluid Mech. 11, 405-425. https://doi.org/10.1007/s10652-010-9183-y.
|
Dudley, R.W., Panchang, V.G., Newell, C.R., 2000. Application of a comprehensive modeling strategy for the management of net-pen aquaculture waste transport. Aquaculture 187(3-4), 319-349. https://doi.org/10.1016/S0044-8486(00)00313-6.
|
Fan, X., Wei, H., Yuan, Y., Zhao, L., 2009. Vertical structure of tidal current in a typically coastal raft-culture area. Continent. Shelf Res. 29(20), 2345-2357. https://doi.org/10.1016/j.csr.2009.10.007.
|
Ferreira, J.G., Saurel, C., Lencart e Silva, J.D., Nunes, J.P., Vazquez, F., 2014.Modelling of interactions between inshore and offshore aquaculture.Aquaculture 426-427, 154-164. https://doi.org/10.1016/j.aquaculture.2014.01.030.
|
Gentry, R.R., Froehlich, H.E., Grimm, D., Kareiva, P., Halpern, B.S., 2017.Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317-1324. https://doi.org/10.1038/s41559-017-0257-9.
|
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: The challenge of feeding 9 billion people. Science 327(5967), 812-818. https://doi.org/10.1126/science.1185383.
|
Grant, J., Bacher, C., 2001. A numerical model of flow modification induced by suspended aquaculture in a Chinese bay. Can. J. Fish. Aquat. Sci. 58(5), 1003-1011. https://doi.org/10.1139/cjfas-58-5-1003.
|
James, S.C., O'Donncha, F., 2019. Drag coefficient parameter estimation for aquaculture systems. Environ. Fluid Mech. 19, 989-1003. https://doi.org/10.1007/s10652-019-09697-7.
|
Johansson, D., Juell, J., Oppedal, F., Stiansen, J., Ruohonen, K., 2007. The influence of the pycnocline and cage resistance on current flow, oxygen flux and swimming behavior of Atlantic salmon (Salmo salar L.) in production cages. Aquaculture 265(1-4), 271-287. https://doi.org/10.1016/j.aquaculture.2006.12.047.
|
Liang, D.F., Wang, X.L., Roger, A.F., Bockelmann-Evans, B.N., 2010. Solving the depth-integrated solute transport equation with a TVD-MacCormack scheme. Environ. Model. Software 25(12), 1619-1629. https://doi.org/10.1016/j.envsoft.2010.06.008.
|
Lin, H.Y., Chen, Z.Z., Hu, J.Y., Cucco, A., Sun, Z.Y., Chen, X.R., Huang, L.F., 2019. Impact of cage aquaculture on water exchange in Sansha Bay. Continent. Shelf Res. 188, 103963. https://doi.org/10.1016/j.csr.2019.103963.
|
Liu, Z., Huguenard, K., 2020. Hydrodynamic response of a floating aquaculture farm in a low inflow estuary. J. Geophys. Res.: Oceans 125(2), e2019JC015625. https://doi.org/10.1029/2019JC015625.
|
Montas, H.J., Reddy, G.V.S.P., Wheaton, F.W., 2000. CFD analysis of flow in aquaculture tanks. In: Proceedings of the 93rd Annual International Meeting of ASAE. ASAE, Washington DC, pp. 1-24.
|
Navarrina, F., Colominas, I., Casteleiro, M., Cueto-Felgueroso, L., G omez, H., Fe, J., Soage, A., 2008. A numerical model for the transport of salinity in estuaries. Int. J. Numer. Methods Fluid. 56(5), 507-523. https://doi.org/10.1002/fld.1538.
|
Newell, C.R., Richardson, J., 2014. The effects of ambient and aquaculture structure hydrodynamics on the food supply and demand of mussel rafts. J.Shellfish Res. 33(1), 257-272. https://doi.org/10.2983/035.033.0125.
|
O'Donncha, F., Hartnett, M., Nash, S., 2013. Physical and numerical investigation of the hydrodynamic implications of aquaculture farms. Aquacult.Eng. 52, 14-26. https://doi.org/10.1016/j.aquaeng.2012.07.006.
|
Panchang, V.G., Cheng, G., Newell, C.R., 1997. Modeling hydrodynamics and aquaculture waste transport in coastal Maine. Estuaries 20(1), 14-41.https://doi.org/10.2307/1352717.
|
Pilditch, C.A., Grant, J., Bryan, K.R., 2001. Seston supply to sea scallops(Placopecten magellanicus) in suspended culture. Can. J. Fish. Aquat. Sci. 58(2), 241-253. https://doi.org/10.1139/cjfas-58-2-241.
|
Plew, D.R., Stevens, C.L., Spigel, R.H., Hartstein, N.D., 2005. Hydrodynamic implications of large offshore mussel farms. IEEE J. Ocean. Eng. 30(1), 95-108. https://doi.org/10.1109/JOE.2004.841387.
|
Plew, D.R., 2011. Depth-averaged drag coefficient for modeling flow through suspended canopies. J. Hydraul. Eng. 137(2), 234-247. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000300.
|
Stevens, C.L., Plew, D.R., Smith, M.J., Fredriksson, D.W., 2007. Hydrodynamic forcing of long-line mussel farms: Observations. J. Waterw. Port, Coast. Ocean Eng. 133(3), 192-199. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:3(192).
|
Tseung, H.L., Kikkert, G.A., Plew, D., 2016. Hydrodynamics of suspended canopies with limited length and width. Environ. Fluid Mech. 16, 145-166. https://doi.org/10.1007/s10652-015-9419-y.
|
Venayagamoorthy, S.K., Ku, H.Y., Fringer, O.B., Chiu, A., Naylor, R.L., Koseff, J.R., 2011. Numerical modeling of aquaculture dissolved waste transport in a coastal embayment. Environ. Fluid Mech. 11, 329-352.https://doi.org/10.1007/s10652-011-9209-0.
|
Wang, B., Cao, L., Micheli, F., Naylor, R.L., Fringer, O.B., 2018. The effects of intensive aquaculture on nutrient residence time and transport in a coastal embayment. Environ. Fluid Mech. 18, 1321-1349. https://doi.org/10.1007/s10652-018-9595-7.
|
Wang, T.P., Tarang, K., Wen, L., Gary, G., 2014. Development of a kelp-type structure module in a coastal ocean model to assess the hydrodynamic impact of seawater uranium extraction technology. J. Mar. Sci. Eng. 2(1), 81-92. https://doi.org/10.3390/jmse2010081.
|
Xu, T.J., Dong, G.H., 2018. Numerical simulation of the hydrodynamic behaviour of mussel farm in currents. J. Ships Offshore Struct. 13(8), 835-846. https://doi.org/10.1080/17445302.2018.1465380.
|
Yang, H., Zhao, Y.P., Bi, C.W., Cui, Y., 2020. Numerical study on hydrodynamic responses of floating rope enclosure in waves and currents. J. Mar.Sci. Eng. 8(2), 82. https://doi.org/10.3390/jmse8020082.
|
Zhang, H.X., Zhang, M.L., Ji, Y.P., Wang, Y.N., Xu, T.P., 2019. Numerical study of tsunami wave run-up and land inundation on coastal vegetated beaches.Comput. Geosci. 132, 9-22. https://doi.org/10.1016/j.cageo.2019.06.010.
|
Zhang, M.L., Xu, H., 2021. Numerical analysis of the potential effect of wetlands on reducing tidal currents in the Liao River Estuary, China.Environ. Model. Assess. 26, 205-220. https://doi.org/10.1007/s10666-020-09729-3.
|
Zhao, F., Huai, W.X., Li, D., 2017. Numerical modeling of open channel flow with suspended canopy. Adv. Water Resour. 105, 132-143. https://doi.org/10.1016/j.advwatres.2017.05.001.
|