Volume 16 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
Tim J. Grandjean, Jaco C. de Smit, Jim van Belzen, Gregory S. Fivash, Jeroen van Dalen, Tom Ysebaert, Tjeerd J. Bouma. 2023: Morphodynamic signatures derived from daily surface elevation dynamics can explain the morphodynamic development of tidal flats. Water Science and Engineering, 16(1): 14-25. doi: 10.1016/j.wse.2022.11.003
Citation: Tim J. Grandjean, Jaco C. de Smit, Jim van Belzen, Gregory S. Fivash, Jeroen van Dalen, Tom Ysebaert, Tjeerd J. Bouma. 2023: Morphodynamic signatures derived from daily surface elevation dynamics can explain the morphodynamic development of tidal flats. Water Science and Engineering, 16(1): 14-25. doi: 10.1016/j.wse.2022.11.003

Morphodynamic signatures derived from daily surface elevation dynamics can explain the morphodynamic development of tidal flats

doi: 10.1016/j.wse.2022.11.003
Funds:

This work was supported by the Royal Netherlands Academy of Arts and Sciences (KNAW) (Grant No. PSA-SA-E-02) and the Province of Zeeland, the Netherlands (Grant No. CoE-Buitendijks).

  • Received Date: 2022-03-31
  • Accepted Date: 2022-11-30
  • Rev Recd Date: 2022-11-01
  • Understanding the sensitivity of tidal flats to environmental changes is challenging. Currently, most studies rely on process-based models to systematically explain the morphodynamic evolution of tidal flats. In this study, we proposed an alternative empirical approach to explore tidal flat dynamics using statistical indices based on long-term time series of daily surface elevation development. Surface elevation dynamic (SED) indices focus on the magnitude and period of surface elevation changes, while morphodynamic signature (MDS) indices relate sediment dynamics to environmental drivers. The statistical analyses were applied to an intervention site in the Netherlands to determine the effect of recently constructed groynes on the tidal flat. Using these analyses, we were able to (1) detect a reduction in the daily SED and (2) determine that the changes in the daily SED were predominantly caused by the reduction in wave impact between the groynes rather than the reduction in tidal currents. Overall, the presented results showed that the combination of novel statistical indices provides new insights into the trajectories of tidal flats, ecosystem functioning, and sensitivity to physical drivers (wind and tides). Finally, we suggested how the SED and MDS indices may help to explore the future trajectories and climate resilience of intertidal habitats.

     

  • loading
  • Balke, T., Bouma, T.J., Horstman, E.M., Webb, E.L., Erftemeijer, P.L., Herman, P.M., 2011. Windows of opportunity: Thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1-9.https://doi.org/10.3354/meps09364.
    Barbier, E.B., 2019. Chapter 27 - The value of coastal wetland ecosystem services. In: Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S.(Eds.), Coastal Wetlands, An Integrated and Ecosystem Approach, Second Edition. Elsevier, Amsterdam, pp. 947-964.
    Belliard, J.P., Silinski, A., Meire, D., Kolokythas, G., Levy, Y., Van Braeckel, A., Bouma, T.J., Temmerman, S., 2019. High-resolution bedlevel changes in relation to tidal and wave forcing on a narrow fringing macrotidal flat: Bridging intra-tidal, daily and seasonal sediment dynamics. Mar. Geol. 412, 123-138. https://doi.org/10.1016/j.margeo.2019.03.001.
    Bouma, H., Duiker, J., De Vries, P., Herman, P., Wolff, W., 2001. Spatial pattern of early recruitment of Macoma balthica (L.) and Cerastoderma edule (L.) in relation to sediment dynamics on a highly dynamic intertidal sandflat. J. Sea Res. 45(2), 79-93. https://doi.org/10.1016/S1385-1101(01) 00054-5.
    Bouma, T.J., De Vries, M.B., Low, E., Kusters, L., Herman, P.M.J., Tanczos, I.C., Temmerman, S., Hesselink, A., Meire, P., Regenmortel, S.V., 2005. Flow hydrodynamics on a mudflat and in salt marsh vegetation:Identifying general relationships for habitat characterisations. Hydrobiologia 540(1), 259-274. https://doi.org/10.1007/s10750-004-7149-0.
    Bouma, T.J., van Belzen, J., Balke, T., van Dalen, J., Klaassen, P., Hartog, A., Callaghan, D., Hu, Z., Stive, M., Temmerman, S., et al., 2016. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnol.Oceanogr. 61(6), 2261-2275. https://doi.org/10.1002/lno.10374.
    Callaghan, D.P., Bouma, T.J., Klaassen, P., van der Wal, D., Stive, M.J.F., Herman, P.M.J., 2010. Hydrodynamic forcing on salt-marsh development:Distinguishing the relative importance of waves and tidal flows. Estuar.Coast. Shelf Sci. 89(1), 73-88. https://doi.org/10.1016/j.ecss.2010.05.013.
    Cao, H., Zhu, Z., Balke, T., Zhang, L., Bouma, T.J., 2018. Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration. Limnol. Oceanogr. 63(2), 647-659.https://doi.org/10.1002/lno.10657.
    Christie, M., Dyer, K., Turner, P., 1999. Sediment flux and bed-level measurements from a macro tidal mudflat. Estuar. Coast. Shelf Sci. 49(5), 667-688. https://doi.org/10.1006/ecss.1999.0525.
    Cozzoli, F., Bouma, T.J., Ottolander, P., Lluch, M.S., Ysebaert, T., Herman, P.M., 2018. The combined influence of body size and density on cohesive sediment resuspension by bioturbators. Sci. Rep. 8(1), 1-12.https://doi.org/10.1038/s41598-018-22190-3.
    de Smit, J.C., Brückner, M.Z., Mesdag, K.I., Kleinhans, M.G., Bouma, T.J., 2021. Key bioturbator species within benthic communities determine sediment resuspension thresholds. Front. Mar. Sci. 8, 726238. https://doi.org/10.3389/fmars.2021.726238.
    de Smit, J.C., Bin Mohd Noor, M.S., Infantes, E., Bouma, T.J., 2022. Wind exposure and sediment type determine the resilience and response of seagrass meadows to climate change. Limnol. Oceanogr. 67, S121eS123.https://doi.org/10.1002/lno.11865.
    de Vet, P.L.M., van Prooijen, B.C., Wang, Z.B., 2017. The differences in morphological development between the intertidal flats of the Eastern and Western Scheldt. Geomorphology 281, 31-42. https://doi.org/10.1016/j.geomorph.2016.12.031.
    de Vet, P.L.M., van Prooijen, B.C., Schrijvershof, R.A., van der Werf, J.J., Ysebaert, T., Schrijver, M.C., Wang, Z.B., 2018. The importance of combined tidal and meteorological forces for the flow and sediment transport on intertidal shoals. J. Geophys. Res.: Earth Surf. 123(10), 2464-2480. https://doi.org/10.1029/2018JF004605.
    de Vet, P.L.M., van Prooijen, B.C., Colosimo, I., Steiner, N., Ysebaert, T., Herman, P.M.J., Wang, Z.B., 2020. Variations in storm-induced bed-level dynamics across intertidal flats. Sci. Rep. 10, 12877. https://doi.org/10.1038/s41598-020-69444-7.
    de Vriend, H.J., Wang, Z.B., Ysebaert, T., Herman, P.M., Ding, P., 2011.Eco-morphological problems in the Yangtze estuary and the Western Scheldt. Wetlands 31(6), 1033-1042. https://doi.org/10.1007/s13157-011-0239-7.
    Fagherazzi, S., Palermo, C., Rulli, M.C., Carniello, L., Defina, A., 2007. Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats. J. Geophys. Res.: Earth Surf. 112, F02024. https://doi.org/10.1029/ 2006JF000572.
    Fagherazzi, S., Mariotti, G., Leonardi, N., Canestrelli, A., Nardin, W., Kearney, W.S., 2020. Salt marsh dynamics in a period of accelerated sea level rise. J. Geophys. Res.: Earth Surf. 125, e2019JF005200. https://doi.org/10.1029/2019JF005200.
    Friedrichs, C.T., 2011. 3.06 - tidal flat morphodynamics: A synthesis. In:Wolanski, E., McLusky, M. (Eds.), Treatise on Estuarine and Coastal Science. Academic Press, Pittsburgh, pp. 137-170. https://doi.org/10.1016/B978-0-12-374711-2.00307-7.
    Goldberg, L., Lagomasino, D., Thomas, N., Fatoyinbo, T., 2020. Global declines in human-driven mangrove loss. Global Change Biol. 26, 5844-5855. https://doi.org/10.1111/gcb.15275.
    Green, M.O., Black, K.P., Amos, C.L., 1997. Control of estuarine sediment dynamics by interactions between currents and waves at several scales. Mar.Geol. 144(1-3), 97-116. https://doi.org/10.1016/S0025-3227(97)00065-0.
    Hu, Z., Lenting, W., van der Wal, D., Bouma, T.J., 2015a. Continuous monitoring bed-level dynamics on an intertidal flat: Introducing novel, stand-alone high-resolution SED-sensors. Geomorphology 245, 223-230.https://doi.org/10.1016/j.geomorph.2015.05.027.
    Hu, Z., Wang, Z.B., Zitman, T.J., Stive, M.J., Bouma, T.J., 2015b. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory. J. Geophys. Res.: Earth Surf. 120, 1803-1823. https://doi.org/10.1002/2015JF003486.
    Hu, Z., Yao, P., van der Wal, D., Bouma, T.J., 2017. Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.Sci. Rep. 7, 7088. https://doi.org/10.1038/s41598-017-07515-y.
    Hu, Z., van der Wal, D., Cai, H., van Belzen, J., Bouma, T.J., 2018. Dynamic equilibrium behaviour observed on two contrasting tidal flats from daily monitoring of bed-level changes. Geomorphology 311, 114-126. https://doi.org/10.1016/j.geomorph.2018.03.025.
    Hu, Z., Willemsen, P.W.J.M., Borsje, B.W., Wang, C., Wang, H., van der Wal, D., Zhu, Z., Oteman, B., Vuik, V., Evans, B., Möller, I., Belliard, J.P., van Braeckel, A., Temmerman, S., Bouma, T.J., 2021. Synchronized highresolution bed-level change and biophysical data from 10 marsh-mudflat sites in northwestern Europe. Earth Syst. Sci. Data 13, 405-416. https://doi.org/10.5194/essd-13-405-2021.
    Kirby, R., 2000. Practical implications of tidal flat shape. Continent. Shelf Res. 20(10-11), 1061-1077. https://doi.org/10.1016/S0278-4343(00)00012-1.
    Kirezci, E., Young, I.R., Ranasinghe, R., Muis, S., Nicholls, R.J., Lincke, D., Hinkel, J., 2020. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 10, 11629. https://doi.org/10.1038/s41598-020-67736-6.
    Kirwan, M., Temmerman, S., 2009. Coastal marsh response to historical and future sea-level acceleration. Quat. Sci. Rev. 28(17-18), 1801-1808.https://doi.org/10.1016/j.quascirev.2009.02.022.
    Kohsiek, L., Buist, H., Bloks, P., Misdorp, R., van den Berg, J., Visser, J., 1988. Sedimentary processes on a sandy shoal in a mesotidal estuary(Oosterschelde, The Netherlands). In: de Boer, P.L., van Gelder, A., Nio, S.D. (Eds.), Tide-Influenced Sedimentary Environments and Facies.Reidel, Dordrecht, pp. 201-214.
    Le Hir, P., Roberts, W., Cazaillet, O., Christie, M., Bassoullet, P., Bacher, C., 2000. Characterization of intertidal flat hydrodynamics. Continent. Shelf Res. 20(12-13), 1433-1459. https://doi.org/10.1016/S0278-4343(00) 00031-5.
    Li, X., Zhou, Y., Zhang, L., Kuang, R., 2014. Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. J. Hydrol. 511, 432-442. https://doi.org/10.1016/j.jhydrol.2014. 02.013.
    Millennium Ecosystem Assessment, 2005. Ecosystems and Human WellBeing: Current State and Trends, Volume 5. Island Press, Washington DC.
    Murray, N.J., Phinn, S.R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M.B., Clinton, N., Thau, D., Fuller, R.A., 2019. The global distribution and trajectory of tidal flats. Nature 565, 222-225. https://doi.org/10.1038/s41586-018-0805-8.
    Nambu, R., Saito, H., Tanaka, Y., Higano, J., Kuwahara, H., 2012. Wave actions and topography determine the small-scale spatial distribution of newly settled Asari clams Ruditapes philippinarum on a tidal flat.Estuar. Coast. Shelf Sci. 99, 1-9. https://doi.org/10.1016/j.ecss.2011. 11.010.
    Paarlberg, A.J., Knaapen, M.A., de Vries, M.B., Hulscher, S.J., Wang, Z., 2005. Biological influences on morphology and bed composition of an intertidal flat. Estuar. Coast. Shelf Sci. 64(4), 577-590. https://doi.org/10.1016/j.ecss.2005.04.008.
    Passeri, D.L., Hagen, S.C., Medeiros, S.C., Bilskie, M.V., Alizad, K., Wang, D., 2015. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth's Future 3(6), 159-181. https://doi.org/10.1002/2015EF000298.
    Saintilan, N., Khan, N.S., Ashe, E., Kelleway, J.J., Rogers, K., Woodroffe, C.D., Horton, B.P., 2020. Thresholds of mangrove survival under rapid sea level rise. Science 368(6495), 1118-1121. https://doi.org/10.1126/science.aba2656.
    Shepard, C.C., Crain, C.M., Beck, M.W., 2011. The protective role of coastal marshes: A systematic review and meta-analysis. PLoS One 6(11), e27374.https://doi.org/10.1371/journal.pone.0027374.
    Shi, B., Yang, S.L., Temmerman, S., Bouma, T., Ysebaert, T., Wang, S., Zhang, Y., Wu, J., Yang, H., Zhang, L., et al., 2021. Effect of typhooninduced intertidal-flat erosion on dominant macrobenthic species(Meretrix meretrix). Limnol. Oceanogr. 66(12), 4197-4209. https://doi.org/10.1002/lno.11953.
    Temmerman, S., Meire, P., Bouma, T., Herman, P., Ysebaert, T., De Vriend, H.J., 2013. Ecosystem-based coastal defence in the face of global change. Nature 504, 79-83. https://doi.org/10.1038/nature12859.
    van Belzen, J., Fivash, G.S., Hu, Z., Bouma, T.J., Herman, P.M.J., 2022. A probabilistic framework for windows of opportunity: The role of temporal variability in critical transitions. J. R. Soc. Interface 19(190), 20220041.https://doi.org/10.1098/rsif.2022.0041.
    van Dam, G., Koks, L., van Stichelen, K., 2008. Buitendijks Natuurherstel in de Westerschelde Verkenning naar Mogelijke Gebieden en Maatregelen(Report No. GD/08187/1480/C). Provincie Zeeland.
    van der Wegen, M., Jaffe, B.E., 2014. Processes governing decadal-scale depositional narrowing of the major tidal channel in San Pablo Bay, California, USA. J. Geophys. Res.: Earth Surf. 119, 1136-1154. https://doi.org/10.1002/2013JF002824.
    Wang, Z., van Maren, D., Ding, P., Yang, S., van Prooijen, B., de Vet, P., Winterwerp, J., de Vriend, H., Stive, M., He, Q., 2015. Human impacts on morphodynamic thresholds in estuarine systems. Continent. Shelf Res. 111, 174-183. https://doi.org/10.1016/j.csr.2015.08.009.
    Willemsen, P.W.J.M., Borsje, B.W., Hulscher, S.J.M.H., der Wal, D.V., Zhu, Z., Oteman, B., Evans, B., Moller, I., Bouma, T.J., 2018. Quantifying bed-level change at the transition of tidal flat and salt marsh: Can we understand the lateral location of the marsh edge? J. Geophys. Res.: Earth Surf. 123(10), 2509-2524. https://doi.org/10.1029/2018JF004742.
    Yang, S.L., Li, H., Ysebaert, T., Bouma, T.J., Zhang, W.X., Wang, Y.Y., Li, P., Li, M., Ding, P.X., 2008. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls. Estuar. Coast. Shelf Sci. 77(4), 657-671. https://doi.org/10.1016/j.ecss.2007.10.024.
    Zhu, Q., Yang, S., Ma, Y., 2014. Intra-tidal sedimentary processes associated with combined waveecurrent action on an exposed erosional mudflat, southeastern Yangtze River Delta, China. Mar. Geol. 347, 95-106. https://doi.org/10.1016/j.margeo.2013.11.005.
    Zhu, Q., van Prooijen, B.C., Wang, Z.B., Ma, Y.X., Yang, S.L., 2016. Bed shear stress estimation on an open intertidal flat using in situ measurements. Estuar. Coast. Shelf Sci. 182, 190-201. https://doi.org/10.1016/j.ecss.2016.08.028.
    Zhu, Q., van Prooijen, B., Wang, Z., Yang, S., 2017. Bed-level changes on intertidal wetland in response to waves and tides: A case study from the Yangtze river Delta. Mar. Geol. 385, 160-172. https://doi.org/10.1016/j.margeo.2017.01.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (265) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return