Citation: | Mohammad Saeed Fakhimjoo, Abdollah Ardeshir, Kourosh Behzadian, Hojat Karami. 2023: Experimental investigation and flow analysis of clear-water scour around pier and abutment in proximity. Water Science and Engineering, 16(1): 94-105. doi: 10.1016/j.wse.2022.12.001 |
Abid, I., 2017. Interaction of Pier, Contraction, and Abutment Scour in Clear Water Scour Conditions. Ph.D. Dissertation. Georgia Institute of Technology, Atlanta.
|
Chiew, Y.M., Melville, B.W., 1987. Local scour around bridge piers. J.Hydraul. Res. 25(1), 15-26. https://doi.org/10.1080/0022168870949 9285.
|
Chiew, Y.M., 1995. Mechanics of riprap failure at bridge piers. J. Hydraul.Eng. 121(9), 635-643. https://doi.org/10.1061/(ASCE)0733-9429, 1995) 121:9(635.
|
Coleman, S.E., Lauchlan, C.S., Melville, B.W., 2003. Clear-water scour development at bridge abutments. J. Hydraul. Res. 41(5), 521-531. https://doi.org/10.1080/00221680309499997.
|
Dey, S., Barbhuiya, A., 2005a. Time variation of scour at abutments. J.Hydraul. Eng. 131(1), 11-23. https://doi.org/10.1061/(ASCE)0733-9429, 2005)131:1(11.
|
Dey, S., Barbhuiya, A., 2005b. Flow field at a vertical-wall abutment. J.Hydraul. Eng. 131(12), 1126-1135. https://doi.org/10.1061/(ASCE)0733-9429, 2005)131:12(1126.
|
Ettema, R., 1980. Scour at Bridge Piers. University of Auckland, Auckland.Fael, C., Lança, R., Cardoso, A., 2016. Effect of pier shape and pier alignment on the equilibrium scour depth at single piers. Int. J. Sediment Res. 31(3), 244-250. https://doi.org/10.1016/j.ijsrc.2016.04.001.
|
Froehlich, D.C., 1988. Analysis of onsite measurements of scour at piers. In:Hydraulic Engineering: Proceedings of the 1988 National Conference on Hydraulic Engineering. ASCE, New York, pp. 534-539.
|
Guan, D., Chiew, Y.M., Wei, M., Hsieh, S.C., 2019. Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Int.J. Sediment Res. 34(2), 118-124. https://doi.org/10.1016/j.ijsrc.2018.07. 001.
|
Hamill, L., 2011. Understanding Hydraulics. Macmillan International Higher Education, London.Hong, S., 2005. Interaction of Bridge Contraction Scour and Pier Scour in a Laboratory River Model. M.S. Dissertation. Georgia Institute of Technology, Atlanta.
|
Hong, S., Abid, I., 2016. Physical model study of bridge contraction scour.KSCE J. Civ. Eng. 20(6), 2578-2585. https://doi.org/10.1007/s12205-015-0417-x.
|
Karami, H., Ardeshir, A., Behzadian, K., Ghodsian, M., 2011. Protective spur dike for scour mitigation of existing spur dikes. J. Hydraul. Res. 49(6), 809-813. https://doi.org/10.1080/00221686.2011.625166.
|
Khajeh, S.B.M., Vaghefi, M., 2020. Investigation of abutment effect on scouring around inclined pier at a bend. J. Appl. Water Eng. Res. 8(2), 125-138. https://doi.org/10.1080/23249676.2020.1761898.
|
Kirkgöz, M.S., Ardiçlio glu, M., 1997. Velocity profiles of developing and developed open channel flow. J. Hydraul. Eng. 123(12), 1099-1105.https://doi.org/10.1061/(ASCE)0733-9429, 1997)123:12(1099.
|
Kumcu, S., Kokpinar, M., Gogus, M., 2014. Scour protection around verticalwall bridge abutments with collars. KSCE J. Civ. Eng. 18(6), 1884-1895.https://doi.org/10.1007/s12205-014-0245-4.
|
Lamb, R., Garside, P., Pant, R., Hall, J.W., 2019. A probabilistic model of the economic risk to britain's railway network from bridge scour during floods.Risk Anal. 39(11), 2457-2478. https://doi.org/10.1111/risa.13370.
|
Mays, L.W., 2001. Stormwater Collection Systems Design Handbook. McGraw-Hill Education, New York.Melville, B.W., Raudkivi, A.J., 1977. Flow characteristics in local scour at bridge piers. J. Hydraul. Res. 15(4), 373-380. https://doi.org/10.1080/00221687709499641.
|
Melville, B.W., 1992. Local scour at bridge abutments. J. Hydraul. Eng. 118(4), 615-631. https://doi.org/10.1061/(ASCE)0733-9429, 1992)118:4(615.
|
Melville, B.W., 1997. Pier and abutment scour: Integrated approach. J.Hydraul. Eng. 123(2), 125-136. https://doi.org/10.1061/(ASCE)0733-9429, 1997)123:2(125.
|
Melville, B.W., Coleman, S.E., 2000. Bridge Scour. Water Resources Publications, Colorado.Melville, B.W., Yang, Y., Xiong, X., Ettema, R., Nowroozpour, A., 2021.Effects of streamwise abutment length on scour at riprap apron-protected setback abutments in compound channels. J. Hydraul. Eng. 147(3), 04021003. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001860.
|
Oben-Nyarko, K., Ettema, R., 2011. Pier and abutment scour interaction. J.Hydraul. Eng. 137(12), 1598-1605. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000446.
|
Pasupuleti, L.N., Timbadiya, P.V., Patel, P.L., 2022. Flow field measurements around isolated, staggered, and tandem piers on a rigid bed channel. Int. J.Civ. Eng. 20, 569-586. https://doi.org/10.1007/s40999-021-00678-w.
|
Pizarro, A., Manfreda, S., Tubaldi, E., 2020. The science behind scour at bridge foundations: A review. Water 12(2), 374. https://doi.org/10.3390/w12020374.
|
Rahimi, E., Qaderi, K., Rahimpour, M., Ahmadi, M.M., Madadi, M.R., 2021.Scour at side by side pier and abutment with debris accumulation. Mar.Georesour. Geotechnol. 39(4), 459-470. https://doi.org/10.1080/ 1064119X.2020.1716122.
|
Richardson, E.V., Davis, S.R., 2001. Evaluating scour at bridges. In: Hydraulic Engineering Circular No. 18. Department of Transportation, Washington D.C.
|
Saha, R., Lee, S.O., Hong, S.H., 2018. A comprehensive method of calculating maximum bridge scour depth. Water 10(11), 1572. https://doi.org/10.3390/w10111572.
|
Sheppard, D., Miller, W., 2006. Live-bed local pier scour experiments. J.Hydraul. Eng. 132(7), 635-642. https://doi.org/10.1061/(ASCE)0733-9429, 2006)132:7(635.
|
Sheppard, D., Melville, B., Demir, H., 2014. Evaluation of existing equations for local scour at bridge piers. J. Hydraul. Eng. 140(1), 14-23. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000800.
|
Yang, Y., Xiong, X., Melville, B., Sturm, T., 2020. Flow redistribution at bridge contractions in compound channel for extreme hydrological events and implications for sediment scour. J. Hydraul. Eng. 147(3), 04021005.https://doi.org/10.1061/(ASCE)HY.1943-7900.0001861.
|
Zhang, W., Wang, L., Melville, B.W., Guan, D., Whittaker, C.N., Shamseldin, A.Y., 2021. Characteristics of the flow field within a developing scour hole at a submerged weir. J. Hydraul. Res. 60(2), 283-294.https://doi.org/10.1080/00221686.2021.1944928.
|