Volume 16 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Alireza Mehrabani Bashar, Hamed Nozari, Safar Marofi, Mohamad Mohamadi, Ahad Ahadiiman. 2023: Investigation of factors affecting rural drinking water consumption using intelligent hybrid models. Water Science and Engineering, 16(2): 175-183. doi: 10.1016/j.wse.2022.12.002
Citation: Alireza Mehrabani Bashar, Hamed Nozari, Safar Marofi, Mohamad Mohamadi, Ahad Ahadiiman. 2023: Investigation of factors affecting rural drinking water consumption using intelligent hybrid models. Water Science and Engineering, 16(2): 175-183. doi: 10.1016/j.wse.2022.12.002

Investigation of factors affecting rural drinking water consumption using intelligent hybrid models

doi: 10.1016/j.wse.2022.12.002
  • Received Date: 2021-12-20
  • Accepted Date: 2022-12-13
  • Rev Recd Date: 2022-11-24
  • Available Online: 2023-05-11
  • Identifying the factors affecting drinking water consumption is essential to the rational management of water resources and effective environment protection. In this study, the effects of the factors on rural drinking water demand were studied using the adaptive neuro-fuzzy inference system (ANFIS) and hybrid models, such as the ANFIS-genetic algorithm (GA), ANFIS-particle swarm optimization (PSO), and support vector machine (SVM)-simulated annealing (SA). The rural areas of Hamadan Province in Iran were selected for the case study. Five drinking water consumption factors were selected for the assessment according to the literature, data availability, and the characteristics of the study area (such as precipitation, relative humidity, temperature, the number of subscribers, and water price). The results showed that the standard errors of ANFIS, ANFIS-GA, ANFIS-PSO, and SVM-SA were 0.669, 0.619, 0.705, and 0.578, respectively. Therefore, the hybrid model SVM-SA outperformed other models. The sensitivity analysis showed that of the parameters affecting drinking water consumption, the number of subscribers significantly affected the water consumption rate, while the average temperature was the least significant factor. Water price was a factor that could be easily controlled, but it was always one of the least effective parameters due to the low water fee.

     

  • loading
  • Alarifi, I.M., Nguyen, H.M., Naderi Bakhtiyari, A., Asadi, A., 2019. Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/oil hybrid nanofluid. Materials 12, 3628.https://doi.org/10.3390/ma12213628.
    Amiri, A.M., Nadimi, N., Yousefian, A., 2020. Comparing the efficiency of different computation intelligence techniques in predicting accident frequency. IATSS Res. 44(4), 285-292. https://doi.org/10.1016/j.iatssr.2020.03.003.
    Ankışhan, H., Yılmaz, D., 2013. Comparison of SVM and ANFIS for snore related sounds classification by using the largest Lyapunov exponent and entropy. Comput. Math. Methods Med. 238937. https://doi.org/10.1155/2013/238937, 2013.
    Azad, A., Karami, H., Farzin, S., Saeedian, A., Kashi, H., Sayyahi, F., 2018.Prediction of water quality parameters using ANFIS optimized by intelligence algorithms (case study:Gorganrood River). KSCE J. Civ. Eng. 22(7), 2206-2213. https://doi.org/10.1007/s12205-017-1703-6.
    Azad, A., Karami, H., Farzin, S., Mousavi, S.F., Kisi, O., 2019. Modeling river water quality parameters using modified adaptive neuro fuzzy inference system. Water Sci. Eng. 12(1), 45-54. https://doi.org/10.1016/j.wse.2018.11.001.
    Azamathulla, H.M., Wu, F.C., 2011. Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl. Soft Comput. 11(2), 2902-2905. https://doi.org/10.1016/j.asoc.2010.11.026.
    Azamathulla, H.M., Haghiabi, A.H., Parsaie, A., 2016. Prediction of side weir discharge coefficient by support vector machine technique. Water Sci.Technol. Water Supply 16(4), 1002-1016. https://doi.org/10.2166/ws.2016.014.
    Babaei, M., Moeini, R., Ehsanzadeh, E., 2019. Artificial neural network and support vector machine models for inflow prediction of dam reservoir(case study:Zayandehroud Dam Reservoir). Water Resour. Manag. 33(6), 2203-2218. https://doi.org/10.1007/s11269-019-02252-5.
    Babel, M.S., Maporn, N., Shinde, V.R., 2014. Incorporating future climatic and socioeconomic variables in water demand forecasting:A case study in Bangkok. Water Resour. Manag. 28(7), 2049-2062. https://doi.org/10.1007/s11269-014-0598-y.
    Babu ska, R., Verbruggen, H., 2003. Neuro-fuzzy methods for nonlinear system identification. Annu. Rev. Control 27(1), 73-85. https://doi.org/10.1016/S1367-5788(03)00009-9.
    Balling Jr., R.C., Gober, P., 2007. Climate variability and residential water use in the city of Phoenix, Arizona. J. Appl. Meteorol. Climatol. 46(7), 1130-1137. https://doi.org/10.1175/JAM2518.1.
    Chang, F.J., Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 29(1), 1-10.https://doi.org/10.1016/j.advwatres.2005.04.015.
    Chen, S.H., Lin, Y.H., Chang, L.C., Chang, F.J., 2006. The strategy of building a flood forecast model by neuro fuzzy network. Hydrol. Process. 20(7), 1525-1540. https://doi.org/10.1002/hyp.5942.
    Cheng, Z., Zhou, H., Yang, H., 2010. Research on MPPT control of PV system based on PSO algorithm. May. In:Proceedings of 2010 Chinese Control and Decision Conference. IEEE, Nanjing, pp. 887-892.
    Clerc, M., Kennedy, J., 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol.Comput. 6(1), 58-73.
    Dhanasekaran, S., Kumar, K.P.M., Kumar, A.S., Jeya, R., Rajasekaran, S., Murugan, B.S., Rajasubramanian, R., 2022. Chapter 8-Intelligent metaheuristic cluster-based wearable devices for healthcare monitoring in telemedicine systems. In:Jude, H.D., Gupta, D., Khanna, A., Khamparia, A. (Eds.), Wearable Telemedicine Technology for the Healthcare Industry. Academic Press, Pittsburgh, pp. 109-122. https://doi.org/10.1016/B978-0-323-85854-0.00007-1.
    Djurovic, N., Domazet, M., Stricevic, R., Pocuca, V., Spalevic, V., Pivic, R., Gregoric, E., Domazet, U., 2015. Comparison of groundwater level models based on artificial neural networks and ANFIS. Sci. World J. 742138.https://doi.org/10.1155/2015/742138,2015.
    Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory.In:Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, New York, pp. 39-43.
    Eckert, S., Kohler, S., 2014. Urbanization and health in developing countries:A systematic review. World Health Popul. 15(1), 7-20. https://doi.org/10.12927/whp.2014.23722.
    Firat, M., Güngör, M., 2007. River flow estimation using adaptive neuro fuzzy inference system. Math. Comput. Simulat. 75(3 4), 87-96. https://doi.org/10.1016/j.matcom.2006.09.003.
    Giuliani, M., Li, Y., Mainardi, M., Arias Munoz, C., Castelletti, A., Gandolfi, C., 2013. Co-adapting water demand and supply to changing climate in agricultural water systems, a case study in northern Italy. In:AGU Fall Meeting Abstracts, vol. 2013. AGU, San Francisco, pp. H21N-03.
    Haupt, R.L., Haupt, S.E., 2004. Practical Genetic Algorithms, second ed. John Wiley & Sons, Hoboken. https://doi.org/10.1002/0471671746.
    Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
    Jia, Z., Ma, J., Wang, F., Liu, W., 2011. Hybrid of simulated annealing and SVM for hydraulic valve characteristics prediction. Journal Expert Systems with Applications 38(7), 8030-8036. https://doi.org/10.1016/j.eswa.2010.12.132.
    Jin, Y., Branke, J., 2005. Evolutionary optimization in uncertain environmentsa survey. IEEE Trans. Evol. Comput. 9(3), 303-317. https://doi.org/10.1109/TEVC.2005.846356.
    Jing, H., Nikafshan Rad, H., Hasanipanah, M., Armaghani, D.J., Qasem, S.N., 2021. Design and implementation of a new tuned hybrid intelligent model to predict the uniaxial compressive strength of the rock using SFS-ANFIS. Eng. Comput. 37, 2717-2734. https://doi.org/10.1007/s00366-020-00977-1.
    Kisi, O., Azad, A., Kashi, H., Saeedian, A., Hashemi, S.A.A., Ghorbani, S., 2019. Modeling groundwater quality parameters using hybrid neuro-fuzzy methods. Water Resour. Manag. 33(2), 847-861.
    Leon, L.P., Chaplot, B., Solomon, A., 2020. Water consumption forecasting using soft computingea case study, Trinidad and Tobago. Water Supply 20(8), 3576-3584. https://doi.org/10.2166/ws.2020.273.
    Li, L., Rong, S., Wang, R., Yu, S., 2021. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment:A review. Chem. Eng. J. 405, 126673. https://doi.org/10.1016/j.cej.2020.126673.
    Mehta, D.J., Prajapati, K.J., 2018. Simulation of existing water distribution network at Punagam Area of Surat City using WaterGEMS software. In:Urbanization Challenges in Emerging Economies:Energy and Water Infrastructure; Transportation Infrastructure; and Planning and Financing.American Society of Civil Engineers, Reston, pp. 312-321.
    Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W.A.W., Rashid, A.S.A., 2020.Optimization of ANFIS with GA and PSO estimating a ratio in driven piles. Eng. Comput. 36(1), 227-238. https://doi.org/10.1007/s00366-018-00694-w.
    Mustaqeem, M., Saqib, M., 2021. Principal component based support vector machine (PC-SVM):A hybrid technique for software defect detection.Cluster Comput. 24, 2581-2595. https://doi.org/10.1007/s10586-021-03282-8.
    Muthukaruppan, S., Er, M.J., 2012. A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease.Expert Syst. Appl. 39(14), 11657-11665. https://doi.org/10.1016/j.eswa.2012.04.036.
    Nayak, P.C., Sudheer, K.P., Rangan, D.M., Ramasastri, K.S., 2004. A neurofuzzy computing technique for modeling hydrological time series. J.Hydrol. 291(1-2), 52-66. https://doi.org/10.1016/j.jhydrol.2003.12.010.
    Nou, M.R.G., Zolghadr, M., Bajestan, M.S., Azamathulla, H.M., 2020.Application of ANFISePSO hybrid algorithm for predicting the dimensions of the downstream scour hole of ski-jump spillways. Iran. J. Sci.Technol., Trans. Civil. Eng. 45, 1845-1859. https://doi.org/10.1007/s40996-020-00413-w.
    Nozari, H., Azadi, S., 2017. Predicting changes in salinity of agricultural water in different depths and distances of underground drainage by artificial neural network method. Quarter. J. Environ. Sci. Eng. 3(10), 1-12 (in Persian).
    Pai, P., Hong, W., 2006. Software reliability forecasting by support vector machines with simulated annealing algorithms. J. Syst. Software 79(6), 747-755. https://doi.org/10.1016/j.jss.2005.02.025.
    Parviz Aḏkāi, EIr, 2012. Hamad an i. Geography. In:Encyclopædia Iranica, XI/6. Encyclopædia Iranica, New York, pp. 595-599. http://www.iranicaonline.org/articles/hamadan-i.
    Praskievicz, S., Chang, H., 2009. Identifying the relationships between urban water consumption and weather variables in Seoul, Korea. Phys. Geogr. 30(4), 324-337. https://doi.org/10.2747/0272-3646.30.4.324.
    Reuter, U., Liebscher, M., 2008. Global Sensitivity Analysis in View of Nonlinear Structural Behavior. LSDYNA Anwenderforum, Bamberg. Rozos, E., Makropoulos, C., 2013. Source to tap urban water cycle modeling.Environ. Model. Software 41, 139-150. https://doi.org/10.1016/j.envsoft.2012.11.015.
    Sabzevar, S.M., Rezaei, A., Khaleghi, B., 2021. Incremental adaptation strategies for agricultural water management under water scarcity condition in Northeast Iran. Regional Sustainability 2(3), 224-238. https://doi.org/10.1016/j.regsus.2021.11.003.
    Saltelli, A., Tarantola, S., Campolongo, F., 2000. Sensitivity analysis as an ingredient of modeling. Stat. Sci. 15(4), 377-395. https://doi.org/10.1214/ss/1009213004.
    Schleich, J., Hillenbrand, T., 2009. Determinants of residential water demand in Germany. Ecol. Econ. 68(6), 1756-1769. https://doi.org/10.1016/j.ecolecon.2008.11.012.
    Sen, Z., Altunkaynak, A., 2006. A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrol. Process. 20(9), 1993-2009.https://doi.org/10.1002/hyp.5992.
    Shah, M.I., Abunama, T., Javed, M.F., Bux, F., Aldrees, A., Tariq, M.A.U.R., Mosavi, A., 2021. Modeling surface water quality using the adaptive neuro-fuzzy inference system aided by input optimization. Sustainability 13, 4576. https://doi.org/10.3390/su13084576.
    Stafford, T., Pirrone, A., Croucher, M., Krystalli, A., 2020. Quantifying the benefits of using decision models with response time and accuracy data.Behav. Res. Methods 52, 2142-2155. https://doi.org/10.3758/s13428-020-01372-w.
    Wu, P., Tan, M., 2012. Challenges for sustainable urbanization:A case study of water shortage and water environment changes in shandong, China. Procedia Environ. Sci. 13, 919-927. https://doi.org/10.1016/j.proenv.2012.01.085.
    Zhou, F., Zou, L., Liu, X., Zhang, Y., Meng, F., Xie, C., Zhang, S., 2021.Microlandform classification method for grid DEMs based on support vector machine. Arabian J. Geosci. 14, 1269. https://doi.org/10.1007/s12517-021-07596-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (114) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return