Citation: | Alireza Mehrabani Bashar, Hamed Nozari, Safar Marofi, Mohamad Mohamadi, Ahad Ahadiiman. 2023: Investigation of factors affecting rural drinking water consumption using intelligent hybrid models. Water Science and Engineering, 16(2): 175-183. doi: 10.1016/j.wse.2022.12.002 |
Alarifi, I.M., Nguyen, H.M., Naderi Bakhtiyari, A., Asadi, A., 2019. Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/oil hybrid nanofluid. Materials 12, 3628.https://doi.org/10.3390/ma12213628.
|
Amiri, A.M., Nadimi, N., Yousefian, A., 2020. Comparing the efficiency of different computation intelligence techniques in predicting accident frequency. IATSS Res. 44(4), 285-292. https://doi.org/10.1016/j.iatssr.2020.03.003.
|
Ankışhan, H., Yılmaz, D., 2013. Comparison of SVM and ANFIS for snore related sounds classification by using the largest Lyapunov exponent and entropy. Comput. Math. Methods Med. 238937. https://doi.org/10.1155/2013/238937, 2013.
|
Azad, A., Karami, H., Farzin, S., Saeedian, A., Kashi, H., Sayyahi, F., 2018.Prediction of water quality parameters using ANFIS optimized by intelligence algorithms (case study:Gorganrood River). KSCE J. Civ. Eng. 22(7), 2206-2213. https://doi.org/10.1007/s12205-017-1703-6.
|
Azad, A., Karami, H., Farzin, S., Mousavi, S.F., Kisi, O., 2019. Modeling river water quality parameters using modified adaptive neuro fuzzy inference system. Water Sci. Eng. 12(1), 45-54. https://doi.org/10.1016/j.wse.2018.11.001.
|
Azamathulla, H.M., Wu, F.C., 2011. Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl. Soft Comput. 11(2), 2902-2905. https://doi.org/10.1016/j.asoc.2010.11.026.
|
Azamathulla, H.M., Haghiabi, A.H., Parsaie, A., 2016. Prediction of side weir discharge coefficient by support vector machine technique. Water Sci.Technol. Water Supply 16(4), 1002-1016. https://doi.org/10.2166/ws.2016.014.
|
Babaei, M., Moeini, R., Ehsanzadeh, E., 2019. Artificial neural network and support vector machine models for inflow prediction of dam reservoir(case study:Zayandehroud Dam Reservoir). Water Resour. Manag. 33(6), 2203-2218. https://doi.org/10.1007/s11269-019-02252-5.
|
Babel, M.S., Maporn, N., Shinde, V.R., 2014. Incorporating future climatic and socioeconomic variables in water demand forecasting:A case study in Bangkok. Water Resour. Manag. 28(7), 2049-2062. https://doi.org/10.1007/s11269-014-0598-y.
|
Babu ska, R., Verbruggen, H., 2003. Neuro-fuzzy methods for nonlinear system identification. Annu. Rev. Control 27(1), 73-85. https://doi.org/10.1016/S1367-5788(03)00009-9.
|
Balling Jr., R.C., Gober, P., 2007. Climate variability and residential water use in the city of Phoenix, Arizona. J. Appl. Meteorol. Climatol. 46(7), 1130-1137. https://doi.org/10.1175/JAM2518.1.
|
Chang, F.J., Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 29(1), 1-10.https://doi.org/10.1016/j.advwatres.2005.04.015.
|
Chen, S.H., Lin, Y.H., Chang, L.C., Chang, F.J., 2006. The strategy of building a flood forecast model by neuro fuzzy network. Hydrol. Process. 20(7), 1525-1540. https://doi.org/10.1002/hyp.5942.
|
Cheng, Z., Zhou, H., Yang, H., 2010. Research on MPPT control of PV system based on PSO algorithm. May. In:Proceedings of 2010 Chinese Control and Decision Conference. IEEE, Nanjing, pp. 887-892.
|
Clerc, M., Kennedy, J., 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol.Comput. 6(1), 58-73.
|
Dhanasekaran, S., Kumar, K.P.M., Kumar, A.S., Jeya, R., Rajasekaran, S., Murugan, B.S., Rajasubramanian, R., 2022. Chapter 8-Intelligent metaheuristic cluster-based wearable devices for healthcare monitoring in telemedicine systems. In:Jude, H.D., Gupta, D., Khanna, A., Khamparia, A. (Eds.), Wearable Telemedicine Technology for the Healthcare Industry. Academic Press, Pittsburgh, pp. 109-122. https://doi.org/10.1016/B978-0-323-85854-0.00007-1.
|
Djurovic, N., Domazet, M., Stricevic, R., Pocuca, V., Spalevic, V., Pivic, R., Gregoric, E., Domazet, U., 2015. Comparison of groundwater level models based on artificial neural networks and ANFIS. Sci. World J. 742138.https://doi.org/10.1155/2015/742138,2015.
|
Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory.In:Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, New York, pp. 39-43.
|
Eckert, S., Kohler, S., 2014. Urbanization and health in developing countries:A systematic review. World Health Popul. 15(1), 7-20. https://doi.org/10.12927/whp.2014.23722.
|
Firat, M., Güngör, M., 2007. River flow estimation using adaptive neuro fuzzy inference system. Math. Comput. Simulat. 75(3 4), 87-96. https://doi.org/10.1016/j.matcom.2006.09.003.
|
Giuliani, M., Li, Y., Mainardi, M., Arias Munoz, C., Castelletti, A., Gandolfi, C., 2013. Co-adapting water demand and supply to changing climate in agricultural water systems, a case study in northern Italy. In:AGU Fall Meeting Abstracts, vol. 2013. AGU, San Francisco, pp. H21N-03.
|
Haupt, R.L., Haupt, S.E., 2004. Practical Genetic Algorithms, second ed. John Wiley & Sons, Hoboken. https://doi.org/10.1002/0471671746.
|
Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
|
Jia, Z., Ma, J., Wang, F., Liu, W., 2011. Hybrid of simulated annealing and SVM for hydraulic valve characteristics prediction. Journal Expert Systems with Applications 38(7), 8030-8036. https://doi.org/10.1016/j.eswa.2010.12.132.
|
Jin, Y., Branke, J., 2005. Evolutionary optimization in uncertain environmentsa survey. IEEE Trans. Evol. Comput. 9(3), 303-317. https://doi.org/10.1109/TEVC.2005.846356.
|
Jing, H., Nikafshan Rad, H., Hasanipanah, M., Armaghani, D.J., Qasem, S.N., 2021. Design and implementation of a new tuned hybrid intelligent model to predict the uniaxial compressive strength of the rock using SFS-ANFIS. Eng. Comput. 37, 2717-2734. https://doi.org/10.1007/s00366-020-00977-1.
|
Kisi, O., Azad, A., Kashi, H., Saeedian, A., Hashemi, S.A.A., Ghorbani, S., 2019. Modeling groundwater quality parameters using hybrid neuro-fuzzy methods. Water Resour. Manag. 33(2), 847-861.
|
Leon, L.P., Chaplot, B., Solomon, A., 2020. Water consumption forecasting using soft computingea case study, Trinidad and Tobago. Water Supply 20(8), 3576-3584. https://doi.org/10.2166/ws.2020.273.
|
Li, L., Rong, S., Wang, R., Yu, S., 2021. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment:A review. Chem. Eng. J. 405, 126673. https://doi.org/10.1016/j.cej.2020.126673.
|
Mehta, D.J., Prajapati, K.J., 2018. Simulation of existing water distribution network at Punagam Area of Surat City using WaterGEMS software. In:Urbanization Challenges in Emerging Economies:Energy and Water Infrastructure; Transportation Infrastructure; and Planning and Financing.American Society of Civil Engineers, Reston, pp. 312-321.
|
Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W.A.W., Rashid, A.S.A., 2020.Optimization of ANFIS with GA and PSO estimating a ratio in driven piles. Eng. Comput. 36(1), 227-238. https://doi.org/10.1007/s00366-018-00694-w.
|
Mustaqeem, M., Saqib, M., 2021. Principal component based support vector machine (PC-SVM):A hybrid technique for software defect detection.Cluster Comput. 24, 2581-2595. https://doi.org/10.1007/s10586-021-03282-8.
|
Muthukaruppan, S., Er, M.J., 2012. A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease.Expert Syst. Appl. 39(14), 11657-11665. https://doi.org/10.1016/j.eswa.2012.04.036.
|
Nayak, P.C., Sudheer, K.P., Rangan, D.M., Ramasastri, K.S., 2004. A neurofuzzy computing technique for modeling hydrological time series. J.Hydrol. 291(1-2), 52-66. https://doi.org/10.1016/j.jhydrol.2003.12.010.
|
Nou, M.R.G., Zolghadr, M., Bajestan, M.S., Azamathulla, H.M., 2020.Application of ANFISePSO hybrid algorithm for predicting the dimensions of the downstream scour hole of ski-jump spillways. Iran. J. Sci.Technol., Trans. Civil. Eng. 45, 1845-1859. https://doi.org/10.1007/s40996-020-00413-w.
|
Nozari, H., Azadi, S., 2017. Predicting changes in salinity of agricultural water in different depths and distances of underground drainage by artificial neural network method. Quarter. J. Environ. Sci. Eng. 3(10), 1-12 (in Persian).
|
Pai, P., Hong, W., 2006. Software reliability forecasting by support vector machines with simulated annealing algorithms. J. Syst. Software 79(6), 747-755. https://doi.org/10.1016/j.jss.2005.02.025.
|
Parviz Aḏkāi, EIr, 2012. Hamad an i. Geography. In:Encyclopædia Iranica, XI/6. Encyclopædia Iranica, New York, pp. 595-599. http://www.iranicaonline.org/articles/hamadan-i.
|
Praskievicz, S., Chang, H., 2009. Identifying the relationships between urban water consumption and weather variables in Seoul, Korea. Phys. Geogr. 30(4), 324-337. https://doi.org/10.2747/0272-3646.30.4.324.
|
Reuter, U., Liebscher, M., 2008. Global Sensitivity Analysis in View of Nonlinear Structural Behavior. LSDYNA Anwenderforum, Bamberg. Rozos, E., Makropoulos, C., 2013. Source to tap urban water cycle modeling.Environ. Model. Software 41, 139-150. https://doi.org/10.1016/j.envsoft.2012.11.015.
|
Sabzevar, S.M., Rezaei, A., Khaleghi, B., 2021. Incremental adaptation strategies for agricultural water management under water scarcity condition in Northeast Iran. Regional Sustainability 2(3), 224-238. https://doi.org/10.1016/j.regsus.2021.11.003.
|
Saltelli, A., Tarantola, S., Campolongo, F., 2000. Sensitivity analysis as an ingredient of modeling. Stat. Sci. 15(4), 377-395. https://doi.org/10.1214/ss/1009213004.
|
Schleich, J., Hillenbrand, T., 2009. Determinants of residential water demand in Germany. Ecol. Econ. 68(6), 1756-1769. https://doi.org/10.1016/j.ecolecon.2008.11.012.
|
Sen, Z., Altunkaynak, A., 2006. A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrol. Process. 20(9), 1993-2009.https://doi.org/10.1002/hyp.5992.
|
Shah, M.I., Abunama, T., Javed, M.F., Bux, F., Aldrees, A., Tariq, M.A.U.R., Mosavi, A., 2021. Modeling surface water quality using the adaptive neuro-fuzzy inference system aided by input optimization. Sustainability 13, 4576. https://doi.org/10.3390/su13084576.
|
Stafford, T., Pirrone, A., Croucher, M., Krystalli, A., 2020. Quantifying the benefits of using decision models with response time and accuracy data.Behav. Res. Methods 52, 2142-2155. https://doi.org/10.3758/s13428-020-01372-w.
|
Wu, P., Tan, M., 2012. Challenges for sustainable urbanization:A case study of water shortage and water environment changes in shandong, China. Procedia Environ. Sci. 13, 919-927. https://doi.org/10.1016/j.proenv.2012.01.085.
|
Zhou, F., Zou, L., Liu, X., Zhang, Y., Meng, F., Xie, C., Zhang, S., 2021.Microlandform classification method for grid DEMs based on support vector machine. Arabian J. Geosci. 14, 1269. https://doi.org/10.1007/s12517-021-07596-0.
|