Citation: | Maria F. Carboni, Sonia Arriaga, Piet N. L. Lens. 2023: Simultaneous nitrification and autotrophic denitrification in fluidized bed reactors using pyrite and elemental sulfur as electron donors. Water Science and Engineering, 16(2): 143-153. doi: 10.1016/j.wse.2022.12.004 |
Ashok, V., Hait, S., 2015. Remediation of nitrate-contaminated water by solidphase denitrification processea review. Environ. Sci. Pollut. Control Ser. 22(11), 8075-8093. https://doi.org/10.1007/s11356-015-4334-9.
|
Beristain-Cardoso, R., Gómez, J., Méndez-Pampín, R., 2010. The behavior of nitrifying sludge in presence of sulfur compounds using a floating biofilm reactor. Bioresour. Technol. 101(22), 8593. https://doi.org/10.1016/j.biortech.2010.06.084,8098.
|
Bosch, J., Lee, K.Y., Jordan, G., Kim, K.W., Meckenstock, R.U., 2012.Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Environ. Sci. Technol. 46(4), 2095. https://doi.org/10.1021/es2022329,2101.
|
Carboni, M.F., Florentino, A.P., Costa, R.B., Zhan, X., Lens, P.N.L., 2021.Enrichment of autotrophic denitrifiers from anaerobic sludge using sulfurous electron donors. Front. Microbiol. 12, 678323. https://doi.org/10.3389/fmicb.2021.678323.
|
Carboni, M.F., Mills, S., Arriaga, S., Collins, G., Ijaz, U.Z., Lens, P.N.L., 2022. Autotrophic denitrification of high-nitrate wastewater in fluidized bed reactor using pyrite and elemental sulfur as electron donors. Environ.Technol. Innovat. 28, 102878. https://doi.org/10.1016/j.eti.2022.102878.
|
Cardoso, R.B., Sierra-Alvarez, R., Rowlette, P., Flores, E.R., Gómez, J., Field, J.A., 2006. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol. Bioeng. 95(6), 1148-1157. https://doi.org/10.1002/bit.21084.
|
Chen, X., Guo, J., Xie, G., Liu, Y., Yuan, Z., Ni, B., 2015. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor:A model-based investigation of feasibility. Water Res. 85, 295-303. https://doi.org/10.1016/j.watres.2015.08.046.
|
Chung, J., Amin, K., Kim, S., Yoon, S., Kwon, K., Bae, K., 2014. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor.Water Res. 58, 169-178. https://doi.org/10.1016/j.watres.2014.03.071.
|
Di Capua, F., Papirio, S., Lens, P.N.L., Esposito, G., 2015. Chemolithotrophic denitrification in biofilm reactors. Chem. Eng. J. 280, 643-657. https://doi.org/10.1016/j.cej.2015.05.131.
|
Di Capua, F., Pirozzi, F., Lens, P.N.L., Esposito, G., 2019. Electron donors for autotrophic denitrification. Chem. Eng. J. 362, 922-937. https://doi.org/10.1016/j.cej.2019.01.069.
|
Di Capua, F., Mascolo, M.C., Pirozzi, F., Esposito, G., 2020. Simultaneous denitrification, phosphorus recovery and low sulfate production in a recirculated pyrite-packed biofilter (RPPB). Chemosphere 255, 126977.https://doi.org/10.1016/j.chemosphere.2020.126977.
|
Dolejs, P., Paclík, L., Maca, J., Pokorna, D., Zabranska, J., Bartacek, J., 2015.Effect of S/N ratio on sulfide removal by autotrophic denitrification. Appl.Microbiol. Biotechnol. 99(5), 2383-2392. https://doi.org/10.1007/s00253-014-6140-6.
|
Drewnowski, J., Shourjeh, M.S., Kowal, P., Cel, W., 2021. Modelling AOBNOB competition in shortcut nitrification compared with conventional nitrificationedenitrification process. J. Phys. Conf. 1736(1), 012046.https://doi.org/10.1088/1742-6596/1736/1/012046.
|
Dytczak, M.A., Londry, K.L., Oleszkiewicz, J.A., 2008. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 42(8-9), 2320-2328. https://doi.org/10.1016/j.watres.2007.12.018.
|
Erguder, T.H., Boon, N., Vlaeminck, S.E., Verstraete, W., 2008. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor.Environ. Sci. Technol. 42(23), 8715-8720. https://doi.org/10.1021/es801391u.
|
Evangelou, V.P., Zhang, Y.L., 1995. A review:Pyrite oxidation mechanisms and acid mine drainage prevention. Crit. Rev. Environ. Sci. Technol. 25(252), 37-41. https://doi.org/10.1080/10643389509388477.
|
Ferreira, L.P., Müller, T.G., Cargnin, M., De Oliveira, C.M., Peterson, M., 2021.Valorization of waste from coal mining pyrite beneficiation. J. Environ.Chem. Eng. 9(4), 105759. https://doi.org/10.1016/j.jece.2021.105759.
|
Florentino, A.P., Costa, R.B., Hu, Y., Flaherty, V.O., Lens, P.N.L., 2020. Long chain fatty acid degradation coupled to biological sulfidogenesis:A prospect for enhanced metal recovery. Front. Bioeng. Biotechnol. 8, 550253. https://doi.org/10.3389/fbioe.2020.550253.
|
Guerrero, R.B.S., Zaiat, M., 2018. Wastewater post-treatment for simultaneous ammonium removal and elemental sulfur recovery using a novel horizontal mixed aerobic-anoxic fixed-bed reactor configuration. J. Environ. Manag. 215, 358-365. https://doi.org/10.1016/j.jenvman.2018.03.074.
|
Gupta, R.K., Poddar, B.J., Nakhate, S.P., Chavan, A.R., Singh, A.K., Purohit, H.J., Khardenavi, A.A., 2021. Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process:A nonconventional nitrogen removal pathway in wastewater treatment. Lett. Appl. Microbiol. 74(2), 159-184. https://doi.org/10.1111/lam.13553.
|
Hakanen, J., Miettinen, K., Sahlstedt, K., 2011. Wastewater treatment:New insight provided by interactive multiobjective optimization. Decis. Support Syst. 51(2), 328-337. https://doi.org/10.1016/j.dss.2010.11.026.
|
Han, F., Zhang, M., Shang, H., Liu, Z., Zhou, W., 2020. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic limited nitrate wastewater. Bioresour. Technol. 315, 123826. https://doi.org/10.1016/j.biortech.2020.123826.
|
Hao, R., Meng, G., Li, J., 2017. Impact of operating condition on the denitrifying bacterial community structure in a 3DBER-SAD reactor. J. Ind.Microbiol. Biotechnol. 44(1), 9-21. https://doi.org/10.1007/s10295-016-1853-4.
|
Hoffmann, H., Da Costa, T.B., Wolff, D.B., Platzer, C., Da Costa, R.H.R., 2007.The potential of denitrification for the stabilization of activated sludge processes affected by low alkalinity problems. Braz. Arch. Biol. Technol. 50(2), 329-337. https://doi.org/10.1590/S1516-89132007000200018.
|
Hwang, Y.W., Kim, C.G., Choo, I.J., 2005. Simultaneous nitrification/denitrification in a single reactor using ciliated columns packed with granular sulfur. Water Qual. Res. J. Can. 40(1), 91-96. https://doi.org/10.2166/wqrj.2005.008.
|
Iannacone, F., Di Capua, F., Granata, F., Gargano, R., Pirozzi, F., Esposito, G., 2019. Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor. J. Environ. Manag. 250, 109518. https://doi.org/10.1016/j.jenvman.2019.109518.
|
Jiang, L., Chen, X., Qin, M., Cheng, S., Wang, Y., Zhou, W., 2019. On-board saline black water treatment by bioaugmentation original marine bacteria with Pseudoalteromonas sp. SCSE709-6 and the associated microbial community. Bioresour. Technol. 273, 496-505. https://doi.org/10.1016/j.biortech.2018.11.043.
|
Jørgensen, C.J., Jacobsen, O.S., Elberling, B., Aamand, J., 2009. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ. Sci. Technol. 43(13), 4851-4857. https://doi.org/10.1021/es803417s.
|
Kadam, S.S., Mesbah, A., Van Der Windt, E., Kramer, H.J.M., 2010. Rapid online calibration for ATR-FTIR spectroscopy during batch crystallization of ammonium sulphate in a semi-industrial scale crystallizer. Chem.Eng. Res. Des. 89(7), 995-1005. https://doi.org/10.1016/j.cherd.2010.11.013.
|
Kiefer, J., Srärk, A., Kiefer, A.L., Glade, H., 2018. Infrared spectroscopic analysis of the inorganic deposits from water in domestic and technical heat exchangers. Energies 11(4), 798. https://doi.org/10.3390/en11040798.
|
Koenig, A., Zhang, T., Liu, L., Fang, H.H.P., 2005. Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere 58, 1041-1047. https://doi.org/10.1016/j.chemosphere.2004.09.040.
|
Kostrytsia, A., Papirio, S., Frunzo, L., Mattei, M.R., Porca, E., Collins, G., Lens, P.N.L., Esposito, G., 2018. Elemental sulfur-based autotrophic denitrification and denitritation:Microbially catalyzed sulfur hydrolysis and nitrogen conversions. J. Environ. Manag. 211, 313-322. https://doi.org/10.1016/j.jenvman.2018.01.064.
|
Lehner, S., Savage, K., Ciobanu, M., Cliffel, D.E., 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics:An electrochemical study of synthetic pyrite. Geochem. Cosmochim. Acta 71(10), 2491-2509. https://doi.org/10.1016/j.gca.2007.03.005.
|
Li, H., Li, Y., Guo, J., Song, Y., Hou, Y., Lu, C., Han, Y., Shen, X., Liu, B., 2021. Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe2+ regulatory mechanisms:Electron transfer and biofilm properties. Environ. Res. 194(3), 110708. https://doi.org/10.1016/j.envres.2021.110708.
|
Li, Y., Guo, J., Li, H., Song, Y., Chen, Z., Lu, C., Han, Y., Hou, Y., 2020.Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers. Bioresour. Technol. 296, 122340. https://doi.org/10.1016/j.biortech.2019.122340.
|
Liu, T., He, X., Jia, G., Xu, J., Quan, X., You, S., 2020. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater. Chemosphere 247, 125831. https://doi.org/10.1016/j.chemosphere.2020.125831.
|
Majzlan, J., Alpers, C.N., Bender, C., Mccleskey, R.B., Myneni, S.C.B., Neil, J.M., 2011. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chem. Geol. 284(3-4), 296-305. https://doi.org/10.1016/j.chemgeo.2011.03.008.
|
Mora, M., López, L.R., Lafuente, J., Pérez, J., Kleerebezem, R., van Loosdrecht, M.C.M., Gamisans, X., Gabriel, D., 2016. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass. Water Res. 89, 282-292. https://doi.org/10.1016/j.watres.2015.11.061.
|
Park, J., Jin, H., Lim, B., Park, K., Lee, K., 2010. Bioresource technology ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour. Technol. 101(22), 8649-8657. https://doi.org/10.1016/j.biortech.2010.06.142.
|
Pochana, K., Keller, J., 1999. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci. Technol. 39(6), 61-68.https://doi.org/10.1016/S0273-1223(99)00123-7.
|
Pu, J., Feng, C., Liu, Y., Li, R., Kong, Z., Chen, N., Tong, S., Hao, C., Liu, Y., 2015. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater. Bioresour. Technol. 173, 117-123. https://doi.org/10.1016/j.biortech.2014.09.092.
|
Shao, M., Zhang, T., Fang, H.H.P., 2010. Sulfur-driven autotrophic denitrification:Diversity, biochemistry, and engineering applications. Appl.Microbiol. Biotechnol. 88(5), 1027-1042. https://doi.org/10.1007/s00253-010-2847-1.
|
Stams, A.J.M., Van Dijk, J.B., Dijkema, C., Plugge, C.M., 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59(4), 1114-1119.
|
https://doi.org/10.1128/aem.59.4.1114-1119.1993.
|
Tan, X., Yang, Y., Liu, Y., Li, X., Zhu, W., 2021. Quantitative ecology associations between heterotrophic nitrification-aerobic denitrification, nitrogen-metabolism genes, and key bacteria in a tidal flow constructed wetland. Bioresour. Technol. 377, 125549. https://doi.org/10.1016/j.biortech.2021.125449.
|
Xia, Z., Wang, Q., Shea, Z., Gao, M., Zhao, Y., Guo, L., Jin, C., 2019. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Sci. Total Environ. 697, 134047. https://doi.org/10.1016/j.scitotenv.2019.134047.
|
Yang, Y., Chen, T., Morrison, L., Gerrity, S., Collins, G., Porca, E., Li, R., Zhan, X., 2017. Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents. Chem. Eng. J. 328, 511-518. https://doi.org/10.1016/j.cej.2017.07.061.
|
Zhou, W., Li, Y., Liu, X., He, S., Huang, J.C., 2017. Comparison of microbial communities in different sulfur-based autotrophic denitrification reactors.Appl. Microbiol. Biotechnol. 101, 447-453. https://doi.org/10.1007/s00253-016-7912-y.
|