Citation: | Leena V. Bora. 2023: Solar photocatalytic pathogenic disinfection: Fundamentals to state-of-the-art. Water Science and Engineering, 16(2): 132-142. doi: 10.1016/j.wse.2022.12.005 |
Abeledo-Lameiro, M.J., Ares-Mazás, Elvira, Gómez-Couso, H., 2016. Evaluation of solar photocatalysis using TiO2 slurry in the inactivation of Cryptosporidium parvum oocysts in water. J. Photochem. Photobiol. B Biol. 163, 92-99. https://doi.org/10.1016/j.jphotobiol.2016.08.016.
|
Adhikari, B.R., Thind, S.S., Chen, S., Schraft, H., Chen, A., 2018. Efficient bacterial disinfection based on an integrated nanoporous titanium dioxide and ruthenium oxide bifunctional approach. J. Hazard. Mater. 356, 73-81.https://doi.org/10.1016/j.jhazmat.2018.05.036.
|
Aihemaiti, X., Wang, X., Li, Y., Wang, Y., Xiao, L., Ma, Y., Qi, K., Zhang, Y., Liu, J., Li, J., 2022. Enhanced photocatalytic and antibacterial activities of S-scheme SnO2/Red phosphorus photocatalyst under visible light. Chemosphere 296, 134013. https://doi.org/10.1016/j.chemosphere.2022.134013.
|
Baaloudj, O., Assadi, I., Nasrallah, N., Jery, A.E., Khezami, L., Assadi, A.A., 2021. Simultaneous removal of antibiotics and inactivation of antibioticresistant bacteria by photocatalysis:A review. J. Water Proc. Eng. 42, 102089. https://doi.org/10.1016/j.jwpe.2021.102089.
|
Buck, C., Skillen, N., Robertson, P.K.J., Robertson, J.M.C., 2018. Influence of bacterial, environmental and physical factors in design of photocatalytic reactors for water disinfection. J. Photochem. Photobiol., A 366, 136-141.https://doi.org/10.1016/j.jphotochem.2018.04.030.
|
Byrne, A., Fernandez-Ibañez, P., Dunlop, P.S.M., Dheaya, A.M.A., Hamilton, J.W.J., 2011. Photocatalytic enhancement for solar disinfection of water:A review. Int. J. Photoenergy 2011, 798051. https://doi.org/10.1155/2011/798051.
|
Chaúque, B.J.M., Rott, M.B., 2021. Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply:Advances and challenges. Chemosphere 281, 130754. https://doi.org/10.1016/j.chemosphere.2021.130754.
|
Chong, M.N., Jin, B., Zhu, H., Saint, C., 2010. Bacterial inactivation kinetics, regrowth and synergistic competition in a photocatalytic disinfection system using anatase titanate nanofiber catalyst. J. Photochem. Photobiol.Chem. 214, 1-9. https://doi.org/10.1016/j.jphotochem.2010.05.018.
|
Deng, J., Liang, J., Li, M., Tong, M., 2017. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr. Colloid. Surf. B Biointerfaces 152, 49-57. https://doi.org/10.1016/j.colsurfb.2017.01.003.
|
Evgenidou, E., Chatzisalata, Z., Tsevis, A., Bourikas, K., Torounidou, P., Sergelidis, D., Koltsakidou, A., Lambropoulou, D.A., 2021. Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts:Kinetics, mineralization, antimicrobial activity elimination and disinfection. J. Environ. Chem. Eng. 9(4), 105295. https://doi.org/10.1016/j.jece.2021.105295.
|
Feng, K., Lin, Y., Guo, J., Ye, Z., Zhang, Y., Ma, Q., Shao, Y., Chen, K., Zhuang, J., Lin, D., et al., 2020a. Study on the enhanced electron-hole separation capability of IrxZn1-xO/Ti electrodes with high photoelectrocatalysis efficiency. J. Hazard. Mater. 393, 122488. https://doi.org/10.1016/j.jhazmat.2020.122488.
|
Feng, L., Peillex-Delphe, C., Lü, C., Wang, D., Giannakis, S., Pulgarin, C., 2020b. Employing bacterial mutations for the elucidation of photo-Fenton disinfection:Focus on the intracellular and extracellular inactivation mechanisms induced by UVA and H2O2. Water Res. 182, 116049. https://doi.org/10.1016/j.watres.2020.116049.
|
Feng, T., Liang, J., Ma, Z., Li, M., Tong, M., 2018. Bactericidal activity and mechanisms of BiOBr-AgBr under both darkand visible light irradiation conditions. Colloid. Surf. B Biointerf. 167, 275-283. https://doi.org/10.1016/j.colsurfb.2018.04.022.
|
García-Fernández, I., Fernández-Calderero, I., Polo-López, M.I., FernándezIbáñez, P., 2015. Disinfection of urban effluents using solar TiO2 photocatalysis:A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catal. Today 240, 30-38. https://doi.org/10.1016/j.cattod.2014.03.026.
|
Gomes, J., Roccamante, M., Contreras, S., Medina, F., Oller, I., Martins, R.C., 2021. Scale-up impact over solar photocatalytic ozonation with benchmark-P25 and N-TiO2 for insecticides abatement in water. J. Environ. Chem. Eng. 9(1), 104915. https://doi.org/10.1016/j.jece.2020.104915.
|
Goulhen-Chollet, F., Josset, S., Keller, N., Keller, V., Lett, M., 2009. Monitoring the bactericidal effect of UV-A photocatalysis:A first approach through 1D and 2D protein electrophoresis. Catal. Today 147, 169-172.https://doi.org/10.1016/j.cattod.2009.06.001.
|
Gumy, D., Rincon, A.G., Hajdu, R., Pulgarin, C., 2006. Solar photocatalysis for detoxification and disinfection of water:Different types of suspended and fixed TiO2 catalysts study. Sol. Energy 80, 1376-1381. https://doi.org/10.1016/j.solener.2005.04.026.
|
He, J., Kumar, A., Khan, M., Lo, L.M.C., 2021. Critical review of photocatalytic disinfection of bacteria:From noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions. Sci. Total Environ. 758, 143953. https://doi.org/10.1016/j.scitotenv.2020.143953.
|
Hu, X., Hu, X., Tang, C., Wen, S., Wu, X., Long, J., Yang, X., Wang, H., Lu, Z., 2017. Mechanisms underlying degradation pathways of microcystin-LR with doped TiO2 photocatalysis. Chem. Eng. J. 330(15), 355-371. https://doi.org/10.1016/j.cej.2017.07.161.
|
Huang, K., Li, C., Zheng, Y., Wang, L., Wang, W., Meng, X., 2022. Recent advances on silver-based photocatalysis:Photocorrosion inhibition, visible-light responsivity enhancement, and charges separation acceleration. Separ. Purif. Technol. 283, 120194. https://doi.org/10.1016/j.seppur.2021.120194.
|
Inamori, Y., Fujimoto, N., 2018. Microbial/biological contamination of water. In:Kobota, S., Tsuchiya, Y. (Eds.), Water Quality and Standards e Volume 2.EOLSS Publications, Paris.
|
Jabbar, Z.H., Ebrahim, S.E., 2022. Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater:A comprehensive review. Environ. Nanotechnol.Monit. Manag. 17, 100666. https://doi.org/10.1016/j.enmm.2022.100666.
|
Jaimy, K.B., Ghosh, S., Warrier, K.G., 2012. Enhanced visible light activity of nano-titanium dioxide doped with multiple ions:Effect of crystal defects.J. Solid State Chem. 196, 465-470. https://doi.org/10.1016/j.jssc.2012.06. 048.
|
Ju, L., Wu, P., Ju, Y., Chen, M., Yang, S., Zhu, H., 2021. The degradation mechanism of Bisphenol A by photoelectrocatalysis using new materials as the working electrode. Surface. Interfac. 23, 100967. https://doi.org/10.1016/j.surfin.2021.100967.
|
Kubacka, A., Ferrer, M., Martínez-Arias, A., Fernández-García, M., 2008. Ag promotion of TiO2-anatase disinfection capability:Study of Escherichia coli inactivation. Appl. Catal. B Environ. 84(1-2), 87-93. https://doi.org/10.1016/j.apcatb.2008.02.020.
|
Kumar, R., Raizada, P., Verma, N., Hosseini-Bandegharaei, A., Thakur, K.V., Le, Q.V., Nguyen, V., Selvasembian, R., Singh, P., 2021. Recent advances on water disinfection using bismuth based modified photocatalysts:Strategies and challenges. J. Clean. Prod. 297, 126617. https://doi.org/10.1016/j.jclepro.2021.126617.
|
Liang, J., Deng, J., Liu, F., Li, M., Tong, M., 2018. Enhanced bacterial disinfection by Bi2MoO6-AgBr under visible light irradiation. Colloid.Surf. B Biointerf. 161, 528-536. https://doi.org/10.1016/j.colsurfb.2017.11.019.
|
Liu, C., Kong, D., Hsu, P., Yuan, H., Lee, H., Liu, Y., Wang, H., Wang, S., Yan, K., Lin, D., et al., 2016. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098-1104. https://doi.org/10.1038/nnano.2016.138.
|
Liu, S., Zhao, M., He, Z., Zhong, Y., Ding, H., Chen, D., 2019. Preparation of a p-n heterojunction 2D BiOI nanosheet/1DBiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis. Chin. J. Catal. 40(3), 446-457. https://doi.org/10.1016/S1872-2067(18)63186-9.
|
Lydakis-Simantiris, N., Riga, D., Katsivela, E., Mantzavinos, D., Xekoukoulotakis, N.P., 2010. Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis. Desalination 250, 351-355. https://doi.org/10.1016/j.desal.2009.09.055.
|
Ma, S., Zhan, S., Jia, Y., Shi, Q., Zhou, Q., 2016. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B Environ. 186, 77-87. https://doi.org/10.1016/j.apcatb.2015.12.051.
|
Ma, S., Zhan, S., Xa, Y., Wang, P., Hou, Q., Zhou, Q., 2019. Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/gC3N4 composite under visible light. Catal. Today 330, 179-188. https://doi.org/10.1016/j.cattod.2018.04.014.
|
Maddigpu, P.R., Sawant, B., Wanjari, S., Goel, M.D., Vione, D., Dhodapkar, R.S., Rayalu, S., 2018. Carbon nanoparticles for solar disinfection of water. J. Hazard. Mater. 343, 157-165. https://doi.org/10.1016/j.jhazmat.2017.08.045.
|
Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis:Recent overview and trends. Catal. Today 147, 1-59. https://doi.org/10.1016/j.cattod.2009.06.018.
|
Manasa, M., Chandewar, P.R., Mahalingam, H., 2021. Photocatalytic degradation of ciprofloxacin & norfloxacin and disinfection studies under solar light using boron & cerium doped TiO2 catalysts synthesized by green EDTA-citrate method. Catal. Today 375, 522-536. https://doi.org/10.1016/j.cattod.2020.03.018.
|
Matin, A.R., Yousefzadeh, S., Ahmadi, E., Mahvi, A., Alimohammadi, M., Aslani, H., Nabizadeh, R., 2018. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization. Food Chem. Toxicol. 116(B), 129-137. https://doi.org/10.1016/j.fct.2018.04.002.
|
Matsunaga, S., 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29(1-2), 211-214. https://doi.org/10.1111/j.1574-6968.1985.tb00864.x.
|
McEvoy, J.,G., Cui, W., Zhang, Z., 2013. Degradative and disinfective properties of carbon-doped anataseerutile TiO2 mixtures under visible light irradiation.Catal. Today 207, 191-199. https://doi.org/10.1016/j.cattod.2012.04.015.
|
McEvoy, J.G., Zhang, Z., 2014. Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J. Photochem. Photobiol. C Photochem. Rev. 19, 62-75. https://doi.org/10.1016/j.jphotochemrev.2014.01.001.
|
McGuigan, K.G., Conroy, R.M., Mosler, H., du Preez, M., Ubomba-Jaswa, E., Fernandez-Ibañez, P., 2012. Solar water disinfection (SODIS):A review from bench-top to roof-top. J. Hazard. Mater. 235(236), 29-46. https://doi.org/10.1016/j.jhazmat.2012.07.053.
|
Mecha, A.G., Onyango, M.S., Ochieng, A., Momba, M.N.B., 2017. Evaluation of synergy and bacterial regrowth in photocatalytic ozonation disinfection of municipal wastewater. Sci. Total Environ. 626-635. https://doi.org/10.1016/j.scitotenv.2017.05.204, 601-602.
|
Mehrjouei, M., Müller, S., Möller, D., 2015. A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209-219. https://doi.org/10.1016/j.cej.2014.10.112.
|
Mendez-Hermida, F., Ares-Mazás, E., McGuigan, K.G., Boyle, M., Sichel, C., Fernández-Ibáñez, P., 2007. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. J. Photochem. Photobiol. B Biol. 88, 105-111. https://doi.org/10.1016/j.jphotobiol.2007.05.004.
|
Meng, X., Zhang, Z., Li, X., 2015. Synergetic photoelectrocatalytic reactors for environmental remediation:A review. J. Photochem. Photobiol. C Photochem. Rev. 24, 83-101. https://doi.org/10.1016/j.jphotochemrev.2015.07.003.
|
Montenegro-Ayo, R., Barrios, A.C., Mondal, I., Bhagat, K., MoralesGomero, J.C., Abbaszadegan, M., Westerhoff, P.K., Perreault, F., GarciaSegura, S., 2020. Portable point-of-use photoelectrocatalytic device provides rapid water disinfection. Sci. Total Environ. 737, 140044. https://doi.org/10.1016/j.scitotenv.2020.140044.
|
Obuchi, E., Furusho, T., Katoh, K., Soejima, T., Nakano, K., 2019. Photocatalytic disinfection of sporulating Bacillus subtilis using silver-doped TiO2/SiO2. J. Water Proc. Eng. 30, 100511. https://doi.org/10.1016/j.jwpe.2017.10.011.
|
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., 2004. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. Gen. 25(1), 115-121. https://doi.org/10.1016/j.apcata.2004.01.007.
|
Ouay, B.L., Stellacci, F., 2015. Antibacterial activity of silver nanoparticles:A surface science insight. Nano Today 10, 339-354. https://doi.org/10.1016/j.nantod.2015.04.002.
|
Patil, S.B., Patil, S.B., Ganganagappa, N., Kakarla, R.R., Raghu, A.V., Venkata, C.R., 2020. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energ. 45(13), 7764-7778. https://doi.org/10.1016/j.ijhydene.2019.07.241.
|
Pham, T., Lee, B., 2014. Effects of Ag doping on the photocatalytic disinfection of E. coli in bioaerosol by AgeTiO2/GF under visible light. J.Colloid Interf. Sci. 428, 24-31. https://doi.org/10.1016/j.jcis.2014.04.030.
|
Phan, D.D., Babick, F., Trinh, T.T.H., Nguyen, M.T.T., Samhaber, W., Stintz, M., 2018. Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes. Chem. Eng. Sci. 191, 332-342. https://doi.org/10.1016/j.ces.2018.06.062.
|
Polo-López, M.I., Castro-Alf erez, M., Oller, I., Fernández-Ibáñez, P., 2014.Assessment of solar photo-Fenton, photocatalysis, and H2O2 for removal of phytopathogen fungi spores in synthetic and real effluents of urban wastewater. Chem. Eng. J. 257, 122-130. https://doi.org/10.1016/j.cej.2014.07.016.
|
Ramasundaram, S., Seid, M.G., Kim, H., Son, A., Lee, C., Kim, E., Hong, S.W., 2018. Binder-free immobilization of TiO2 photocatalyst on steel mesh via electrospraying and hot-pressing and its application for organic micropollutant removal and disinfection. J. Hazard. Mater. 360, 62-70. https://doi.org/10.1016/j.jhazmat.2018.07.100.
|
Ray, S.K., Dhakal, D., Regmi, C., Yamaguchui, T., Lee, W.S., 2018. Inactivation of Staphylococcus aureus in visible light by morphology tuned aNiMoO4. J. Photochem. Photobiol. Chem. 350, 59-68. https://doi.org/10.1016/j.jphotochem.2017.09.042.
|
Regmi, C., Joshi, B., Ray, K.S., Gyawali, G., Pandey, P.R., 2016. Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front. Chem. 6, 33. https://doi.org/10.3389/fchem.2018.00033.
|
Rincón, A., Pulgarin, C., 2006. Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl. Catal. B Environ. 63, 222-231. https://doi.org/10.1016/j.apcatb.2005.10.009.
|
Rizzo, L., 2009. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis. J. Hazard. Mater. 165, 48-51. https://doi.org/10.1016/j.jhazmat.2008.09.068.
|
Rizzo, L., Sannino, D., Vaiano, V., Sacco, O., Scarpa, A., Pietrogiacomi, D., 2014. Effect of solar simulated N-doped TiO2 photocatalysis on theinactivation and antibiotic resistance of an E. coli strain in biologicallytreated urban wastewater. Appl. Catal. B Environ. 144, 369-378.
|
https://doi.org/10.1016/j.apcatb.2013.07.033.
|
Rubio, D., Casanueva, J.F., Nebot, E., 2013. Improving UV seawater disinfection with immobilized TiO2:Study of the viability of photocatalysis(UV254/TiO2) as seawater disinfection technology. J. Photochem. Photobiol. Chem. 271, 16-23. https://doi.org/10.1016/j.jphotochem.2013.08.002.
|
Sheydaei, M., Mohammad, K., Vatanpour, V., 2019. Continuous flow photoelectrocatalysis/reverse osmosis hybrid reactor for degradation of a pesticide using nano N-TiO2/Ag/Ti electrode under visible light. J. Photochem. Photobiol. Chem. 384, 112068. https://doi.org/10.1016/j.jphotochem.2019.112068.
|
Shi, H., Wang, W., Zhang, L., Fan, J., 2021. Enhancement of photocatalytic disinfection performance of the Bi4O5Br2 with the modification of silver quantum dots. J. Environ. Chem. Eng. 9, 105867. https://doi.org/10.1016/j.jece.2021.105867.
|
Shi, Y., Ma, J., Chen, Y., Qian, Y., Xu, B., Chu, W., An, D., 2022. Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation:A review. Sci. Total Environ. 804, 150024. https://doi.org/10.1016/j.scitotenv.2021.150024.
|
Sichel, C., de Cara, M., Tello, J., Blanco, J., Fernández-Ibáñez, P., 2007a. Solar photocatalytic disinfection of agricultural pathogenic fungi:Fusarium species. Appl. Catal. B Environ. 74, 152-160. https://doi.org/10.1016/j.apcatb.2007.02.005.
|
Sichel, C., Tello, J., de Cara, M., Fernández-Ibáñez, P., 2007b. Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal. Today 129, 152-160. https://doi.org/10.1016/j.cattod.2007.06.061.
|
Teng, Z., Yang, N., Lv, H., Wang, S., Hu, M., Wang, C., Wang, D., Wang, G., 2019. Edge-functionalized g-C3N4 nanosheets as a highly efficient metalfree photocatalyst for safe drinking water. Chem 5(3), 664-680. https://doi.org/10.1016/j.chempr.2018.12.009.
|
United Nations, 2020. The United Nations World Water Development Report 2020:Nature Based Solutions for Water. UNESCO, Paris.
|
van Grieken, R., Marugán, J., Sordo, C., Pablos, C., 2009. Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixedbed reactors. Catal. Today 144(1-2), 48-54. https://doi.org/10.1016/j.cattod.2008.11.017.
|
Wang, X., Wang, X., Zhao, J., Song, J., Su, C., Wang, Z., 2018. Adsorptionphotocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of Microcystis aeruginosa. Chem. Eng. J. 341, 516-525. https://doi.org/10.1016/j.cej.2018.02.054.
|
Waso, M., Khan, S., Singh, A., McMichael, S., Ahmed, W., Fernández-Ibáñez, P., Byrne, J.A., Khan, W., 2020. Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. Water Res. 169, 115281. https://doi.org/10.1016/j.watres.2019.115281.
|
Wist, J., Sanabria, J., Dierolf, C., Torres, W., Pulgarin, C., 2002. Evaluation of photocatalytic disinfection of crude water for drinking-water production. J.Photochem. Photobiol. Chem. 147, 241-246. https://doi.org/10.1016/S1010-6030(01)00615-3.
|
World Health Organization (WHO), 2018. Drinking Water. WHO, Geneva.http://www.who.int/news-room/fact-sheets/detail/drinking-water.
|
Xu, Q., Zhang, L., Cheng, B., Fan, J., Yu, J., 2020. S-scheme heterojunction photocatalyst. Chem 6(7), 1543-1559. https://doi.org/10.1016/j.chempr.2020.06.010.
|
Yang, H., Hao, H., Zhao, Y., Min, J., Zhang, G., Bi, J., Yan, S., Hou, H., 2022.An efficient construction method of S-scheme Ag2CrO4/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity. Colloid. Surf. A Physicochem. Eng. Asp. 641, 128603. https://doi.org/10.1016/j.colsurfa.2022.128603.
|
Ye, S., Chen, Y., Yao, X., Zhang, J., 2021. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis:A review. Chemosphere 273, 128503. https://doi.org/10.1016/j.chemosphere.2020.128503.
|
Yu, C., Cai, D., Yang, K., Yu, J.C., Zhou, Y., Fan, C., 2021. Solegel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. J. Phys. Chem. Solid. 71(9), 1337-1343. https://doi.org/10.1016/j.jpcs.2010.06.001.
|
Yuan, Y., Guo, R., Hong, L., Ji, X., Lin, Z., Li, Z., Pan, W., 2021. A review of metal oxide-based Z-scheme heterojunction photocatalysts:Actualities and developments. Mater. Today Energy 21, 100829. https://doi.org/10.1016/j.mtener.2021.100829.
|
Zeng, X., Wang, Z., Meng, N., McCarthy, D.T., Deletic, A., Pan, J., Zhang, X., 2017a. Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide:Ternary nanocomposites for accelerated photocatalytic water disinfection. Appl. Catal. B Environ. 202, 33-41. https://doi.org/10.1016/j.apcatb.2016.09.014.
|
Zeng, X., Wang, Z., Wang, G.G., Gengenbach, T.R., McCarthy, D.T., Deletic, A., Yu, J., Zhang, X., 2017b. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide:Z-Scheme photocatalysis system for accelerated photocatalytic water disinfection.Appl. Catal. B Environ. 218, 163-173. https://doi.org/10.1016/j.apcatb.2017.06.055.
|
Zhang, C., Li, Y., Shuai, D., Shen, Y., Wang, D., 2019a. Progress and challenges in photocatalytic disinfection of waterborne viruses:A review to fill current knowledge gaps. Chem. Eng. J. 355, 399-415. https://doi.org/10.1016/j.cej.2018.08.158.
|
Zhang, C., Zhang, M., Shuai, D., 2019b. Visible-light-driven photocatalytic disinfection of human adenovirus by a novel heterostructure of oxygendoped graphitic carbon nitride and hydrothermal carbonation carbon.Appl. Catal. B Environ. 248, 11-21. https://doi.org/10.1016/j.apcatb.2019.02.009.
|
Zhang, G., Jin, W., Xu, N., 2018. Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 4(6), 848-860. https://doi.org/10.1016/j.eng.2017.05.001.
|
Zhu, Z., Cai, H., Sun, D., 2018. Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci. Tech. 75, 23-35. https://doi.org/10.1016/j.tifs.2018.02.018.
|