Citation: | Wen-de Zhao, Li-ping Chen, Yan Jiao. 2023: Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Science and Engineering, 16(2): 192-202. doi: 10.1016/j.wse.2023.02.002 |
Adamson, A.W., Gast, A.P., 1997. Physical Chemistry of Surfaces, Sixth Edition. Wiley-Interscience, New York.Ahmed, M.J., 2016. Application of agriculturally based activated carbons by microwave and conventional activations for basic dye adsorption:Review. J.Environ. Chem. Eng. 4(1), 89-99. https://doi.org/10.1016/j.jece.2015.10.027.
|
Ahmed, M.J., 2017. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons:Review. Environ.Toxicol. Pharmacol. 50, 1-10. https://doi.org/10.1016/j.etap.2017.01.004.
|
Ai, L., Li, M., Li, L., 2011. Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads:Kinetics, isotherms, and thermodynamics. J. Chem. Eng. Data 56(8), 3475-3483. https://doi.org/10.1021/je200536h.
|
Akbarnejad, S., Amooey, A.A., Ghasemi, S., 2019. High effective adsorption of acid fuchsin dye using magnetic biodegradable polymer-based nanocomposite from aqueous solutions. Microchem. J. 149, 103966. https://doi.org/10.1016/j.microc.2019.103966.
|
Anupam, K., Sikder, J., Pal, S., Halder, G., 2015. Optimizing the cross-flow nanofiltration process for chromium (VI) removal from simulated wastewater through response surface methodology. Environ. Prog. Sustain.Energy 34(5), 1332-1340. https://doi.org/10.1002/ep.12123.
|
Anupam, K., Yadav, V., Karri, R.R., 2021. Chapter 5-entropy and MTOPSIS assisted central composite design for preparing activated carbon toward adsorptive defluoridation of wastewater. In:Dehghani, M.H., Karri, R., Lima, E. (Eds.), Green Technologies for the Defluoridation of Water.Elsevier, Amsterdam, pp. 119e140. https://doi.org/10.1016/B978-0-323-85768-0.00020-8.
|
Baba, M., Schols, D., Pauwels, R., Balzarini, J., Clercq, E.D., 1998. Fuchsin acid selectively inhibits human immunodeficiency virus (HIV) replication in vitro. Biochem. Biophys. Res. Commun. 155(3), 1404-1411. https://doi.org/10.1016/S0006-291X(88)81297-X.
|
Bastidas, J.M., Pinilla, P., Cano, E., Polo, J.L., Miguel, S., 2003. Copper corrosion inhibition by triphenylmethane derivatives in sulphuric acid media. Corrosion Sci. 45(2), 427-449. https://doi.org/10.1016/S0010-938X(02)00123-3.
|
Burke, V., Skinner, C.E., 1924. The reverse selective bacteriostatic action of acid fuchsin. J. Exp. Med. 39(4), 613-624. https://doi.org/10.1084/jem.39.4.613.
|
Chen, B.L., Johnson, E.J., Chefetz, B., Zhu, L.Z., Xing, B.S., 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:Role of polarity and accessibility. Environ. Sci. Technol. 39(16), 6138-6146. https://doi.org/10.1021/es050622q.
|
Chun, Y., Sheng, G.Y., Chiou, C.T., Xing, B.S., 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38(17), 4649-4655. https://doi.org/10.1021/es035034w.
|
Cortes, L.N., Druzian, S.P., Streit, A.F.M., Cadaval, T.R.S., Collazzo, G.C., Dotto, G.L., 2019. Preparation of carbonaceous materials from pyrolysis of chicken bones and its application for fuchsine adsorption. Environ. Sci. Pollut.Res. 26(28), 28574-28583. https://doi.org/10.1007/s11356-018-3679-2.
|
Delnavaz, M., Farahbakhsh, J., Mahdian, S.S., 2021. Photodegradation of reactive blue 19 dye using magnetic nanophotocatalyst a-Fe2O3/WO3:A comparison study of a-Fe2O3/WO3 and WO3/NaOH. Water Sci. Eng. 14(2), 119-128. https://doi.org/10.1016/j.wse.2021.06.007.
|
Dutta, M., Basu, J.K., 2014. Fixed-bed column study for the adsorptive removal of acid fuchsin using carbon-alumina composite pellet. Int. J.Environ. Sci. Technol. 11(1), 87-96. https://doi.org/10.1007/s13762-013-0386-x.
|
El-Bindary, A.A., Hussien, M.A., Diab, M.A., Eessa, A.M., 2014. Adsorption of acid yellow 99 by polyacrylonitrile/activated carbon composite:Kinetics, thermodynamics and isotherm studies. J. Mol. Liq. 197, 236-242. https://doi.org/10.1016/j.molliq.2014.05.003.
|
Freundlich, H.M., 1906. Over the adsorption in solution. J. Phys. Chem. 57, 385-470.
|
Ganesan, P., Kamaraj, R., Sozhan, G., Vasudevan, S., 2013a. Oxidized multiwalled carbon nanotubes as adsorbent for the removal of manganese from aqueous solution. Environ. Sci. Pollut. Control Ser. 20(2), 987-996.https://doi.org/10.1007/s11356-012-0928-7.
|
Ganesan, P., Kamaraj, R., Vasudevan, S., 2013b. Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. J. Taiwan Inst. Chem. Eng. 44(5), 808-814. https://doi.org/10.1016/j.jtice.2013.01.029.
|
Gao, Z., Yi, Y., Zhao, J., Xia, Y., Jiang, M., Cao, F., 2018. Co-immobilization of laccase and TEMPO onto amino-functionalized magnetic Fe3O4 nanoparticles and its application in acid fuchsin decolorization. Bioresour.Bioprocess. 5, 27. https://doi.org/10.1186/s40643-018-0215-7.
|
Greer, L., Keane, S., Lin, C., Zhou, A., Yiliqi, Tong, T., 2015. The Textile Industry Leaps Forward with Clean by Design:Less Environmental Impact with Bigger Profits. Natural Resources Defense Council, New York.
|
Ho, Y.S., 2006. Review of second-order models for adsorption systems. J. Hazard.Mater. 136(3), 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043.
|
Hwang, H.R., Choi, W.J., Kim, T.J., Kim, J.S., Oh, K.J., 2008. The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent. Journal of Analyticval and Applied Pyrolysis 83(2), 220-226. https://doi.org/10.1016/j.jaap.2008.09.011.
|
Kalkan, E., Nadaroglu, H., Celebi, N., Celik, H., Tasgin, E., 2015. Experimental study to remediate acid fuchsin dye using laccase-modified zeolite from aqueous solutions. Pol. J. Environ. Stud. 24(1), 115-124. https://doi.org/10.15244/pjoes/23797.
|
Kamaraj, R., Davidson, D.J., Sozhan, G., Vasudevan, S., 2014. An in situ electrosynthesis of metal hydroxides and their application for adsorption of 4-chloro-2-methylphenoxyacetic acid (MCPA) from aqueous solution. J. Environ. Chem. Eng. 2(4),2068-2077. https://doi.org/10.1016/j.jece.2014.08.027.
|
Kamaraj, R., Davidson, D.J., Sozhan, G., Vasudevan, S., 2015. Adsorption of herbicide 2-(2,4-dichlorophenoxy) propanoic acid by electrochemically generated aluminum hydroxides:An alternative to chemical dosing. RSC Adv. 5(50), 39799-39809. https://doi.org/10.1039/c5ra03339j.
|
Kamaraj, R., Vasudevan, S., 2015. Decontamination of selenate from aqueous solution by oxidized multi-walled carbon nanotubes. Powder Technol. 274, 268-275. https://doi.org/10.1016/j.powtec.2015.01.043.
|
Kamaraj, R., Pandiarajan, A., Jayakiruba, S., Naushad, M., Vasudevan, S., 2016.
|
Kinetics, thermodynamics and isotherm modeling for removal of nitrate from liquids by facile one-pot electrosynthesized nano zinc hydroxide. J.Mol. Liq. 215, 204-211. https://doi.org/10.1016/j.molliq.2015.12.032.
|
Kamaraj, R., Vasudevan, S., 2016. Facile one-pot electrosynthesis of Al(OH)3- kinetics and equilibrium modeling for adsorption of 2,4,5-trichlorophenoxyacetic acid from aqueous solution. New J. Chem. 40(3), 2249-2258. https://doi.org/10.1039/c5nj02407b.
|
Kamaraj, R., Pandiarajan, A., Gandhi, M.R., Shibayama, A., Vasudevan, S., 2017. Eco-friendly and easily prepared graphenenanosheets for safe drinking water:Removal of chlorophenoxyacetic acid herbicides. ChemistrySelect 2(1), 342-355. https://doi.org/10.1002/slct.201601645.
|
Kong, J., Huang, L., Yue, Q., Gao, B., 2014. Preparation of activated carbon derived from leather waste by H3PO4 activation and its application for basic fuchsin adsorption. Desalination Water Treat. 52(13-15), 2440-2449. https://doi.org/10.1080/19443994.2013.794713.
|
Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl. 24(4), 1-39.
|
Lakshmi, J., Vasudevan, S., 2013. GraphenedA promising material for removal of perchlorate (ClO 4) from water. Environ. Sci. Pollut. Res. 20(8), 5114-5124. https://doi.org/10.1007/s11356-013-1499-y.
|
Langmuir, I., 1918. The adsorption of gases on plane surface of glasses. J. Am.Chem. Soc. 40, 1361-1403.
|
Liu, S., Xu, W.H., Liu, Y.G., Tan, X.F., Zeng, G.M., Li, X., 2017. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water. Sci. Total Environ. 592, 546-553. https://doi.org/10.1016/j.scitotenv.2017.03.087.
|
Liu, Y.Q., Maulidiany, N., Zeng, P., Heo, S., 2021. Decolourization of azo, anthraquinone and triphenylmethane dyes using aerobic granules:Acclimatization and long-term stability. Chemosphere 263, 128312. https://doi.org/10.1016/j.chemosphere.2020.128312.
|
Ma, H., Feng, L., Kang, M., Yang, Z., Zhang, R., Li, H., 2020. Potential low-cost biosorbent modified from yard waste for acid-fuchsin removal. J. Environ. Eng. 146(8), 04020085. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001757.
|
Mahmoodi, N.M., Arami, M., Bahrami, H., Khorramfar, S., 2010. Novel biosorbent (Canola hull):Surface characterization and dye removal ability at different cationic dye concentrations. Desalination 264(1-2), 134-142. https://doi.org/10.1016/j.desal.2010.07.017.
|
Maroto-Valer, M.M., Andresen, J.M., Snape, C.E., 1998. Verification of the linear relationship between carbon aromaticities and H/C ratios for bituminous coals. Fuel 77(7), 783-785. https://doi.org/10.1016/S0016-2361(97)00227-5.
|
Myglovets, M., Poddubnaya, O.I., Sevastyanova, O., Lindstrom, M.E., Gawdzik, B., Sobiesiak, M., 2014. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80, 771-783. https://doi.org/10.1016/j.carbon.2014.09.032.
|
Palodkar, A.V., Anupam, K., Banerjee, S., Halder, G., 2017. Insight into preparation of activated carbon towards defluoridation of waste water:Optimization, kinetics, equilibrium, and cost estimation. Environ. Prog.Sustain. Energy 36(6), 1597-1611. https://doi.org/10.1002/ep.12613.
|
Pandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S., 2018. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water:Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresour.Technol. 261, 329-341. https://doi.org/10.1016/j.biortech.2018.04.005.
|
Patidar, K., Vashishtha, M., 2020. Optimization of process variables to prepare mesoporous activated carbon from mustard straw for dye adsorption using response surface methodology. Water Air Soil Pollut. 231(10), 526. https://doi.org/10.1007/s11270-020-04893-4.
|
Peiris, C., Gunatilake, S.R., Mlsna, T.E., Mohan, D., Vithanage, M., 2017.Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments:A critical review. Bioresour. Technol. 246, 150-159. https://doi.org/10.1016/j.biortech.2017.07.150.
|
Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S., 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from waste water:Mechanisms, isotherms and kinetics. Water Res. 43(9), 2419-2430. https://doi.org/10.1016/j.watres.2009.02.039.
|
Qiao, X.Q., Hu, F.C., Tian, F.Y., Hou, D.F., Li, D.S., 2016. Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv. 6(14), 11631-11636. https://doi.org/10.1039/c5ra24328a.
|
Radjenovic, J., Sedlak, D.L., 2015. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49, 11292-11302. https://doi.org/10.1021/acs.est.5b02414.
|
Rahnama, S., Shariati, S., Divsar, F., 2018. Synthesis of functionalized magnetite titanium dioxide nanocomposite for removal of acid fuchsine dye. Combinatorial Chemistry and High Throughput Screening 21(8), 583-593. https://doi.org/10.2174/1386207321666181019111211.
|
Reffas, A., Bernardet, V., David, B., Reinert, L., Lehocine, M.B., Dubois, M., 2010. Carbons prepared from coffee grounds by H3PO4 activation:Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. J. Hazard. Mater. 175(1-3), 779-788. https://doi.org/10.1016/j.jhazmat.2009.10.076.
|
Renita, A.A., Kumar, P.S., Jabasingh, S.A., 2019. Redemption of acid fuchsin dye from wastewater using de-oiled biomass:Kinetics and isotherm analysis. Bioresource Technology Reports 7, 100300. https://doi.org/10.1016/j.biteb.2019.100300.
|
Sheng, Y., Zhen, L., Wang, X., Li, N., Tong, Q., 2010. Degradation of acid fuchsine by a modified electro-Fenton system with magnetic stirring as oxygen supplying. J. Environ. Sci. 22(4), 547-554. https://doi.org/10.1016/S1001-0742(09)60144-3.
|
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., 1985. Reporting physisorption data for gas solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603-619. https://doi.org/10.1351/pac198557040603.
|
Song, M., Zhang, W., Chen, Y., Luo, J., Crittenden, J.C., 2017. The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams. Front. Chem. Sci. Eng. 11(3), 328-337. https://doi.org/10.1007/s11705-017-1646-y.
|
Sun, X., Cheng, P., Wang, H., Xu, H., Dang, L., Liu, Z., 2015. Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon 92, 1-10. https://doi.org/10.1016/j.carbon.2015.02.052.
|
Tabaraki, R., Sadeghinejad, N., 2017. Biosorption of six basic and acidic dyes on brown alga Sargassum ilicifolium:Optimization, kinetic and isotherm studies. Water Sci. Technol. 75(11), 2631-2638. https://doi.org/10.2166/wst.2017.136.
|
Tan, I.A.W., Ahmad, A.L., Hameed, B.H., 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk:Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 154(1-3), 337-346. https://doi.org/10.1016/j.jhazmat.2007.10.031.
|
Temkin, M.J., Pyzhev, V., 1940. Recent modifications to Langmuir isotherms.Acta Physicochim. URSS 12, 217-225.
|
Teng, H., Yeh, T.S., Hsu, L.Y., 1998. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 36(9), 1387-1395. https://doi.org/10.1016/S0008-6223(98)00127-4.
|
Vasudevan, S., Lakshmi, J., 2012a. The adsorption of phosphate by graphene from aqueous solution. RSC Adv. 2(12), 5234-5242. https://doi.org/10.1039/c2ra20270k.
|
Vasudevan, S., Lakshmi, J., 2012b. Electrochemical removal of boron from water:Adsorption and thermodynamic studies. Can. J. Chem. Eng. 90(4), 1017-1026. https://doi.org/10.1002/cjce.20585.
|
Vladov, D.C.H., Raicheva, L.P., Nikolov, R.N., Radoykova, T.H.R., Nenkova, S.K., 2019. Preparation of efficient carbonaceous material(active carbon) from hydrolysed lignin through direct activation with phosporic acid. Cell. Chem. Technol. 53(7-8), 731-738. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.71.
|
Wang, B., Li, Y., Si, H., Chen, H., Zhang, M., Song, T., 2018. Analysis of the physical and chemical properties of activated carbons based on hulless barley straw and plain wheat straw obtained by H3PO4 activation. Bioresources 13(3), 5204-5212. https://doi.org/10.15376/BIORES.13.3.5204-5212.
|
Wu, Z., Zhong, H., Yuan, X., Wang, H., Wang, L., Chen, X., 2014. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 67, 330-344. https://doi.org/10.1016/j.watres.2014.09.026.
|
Yang, Q., Wu, P., Liu, J., Rehman, S., Ahmed, Z., Ruan, B., 2020. Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon:Adsorption rate and nature of mechanism. Environ. Res. 181, 108899. https://doi.org/10.1016/j.envres.2019.108899.
|
Yang, S., Wu, Y., Wu, Y., Zhu, L., 2015. Optimizing decolorization of acid fuchsin and acid orange II solution by MnO2 loaded MCM-41. J. Taiwan Inst. Chem. E. 50, 205-214. https://doi.org/10.1016/j.jtice.2014.12.023.
|
Yang, Z., Yang, Y., Zhu, X., Chen, G., Zhang, W., 2014. An outward coating route to CuO/MnO2 nanorod array films and their efficient catalytic oxidation of Acid Fuchsin dye. Ind. Eng. Chem. Res. 53(23), 9608-9615.https://doi.org/10.1021/ie500358p.
|
Yin, X., Zhang, F., Zhang, W., 2015. Fabrication of hybrid magnetic Sr5Ba3(PO4)3(OH)/Fe3O4 nanorod and its highly efficient adsorption performance for acid fuchsin dye. Appl. Surf. Sci. 359, 714-722. https://doi.org/10.1016/j.apsusc.2015.10.162.
|
Zeng, Z., Ye, S., Wu, H., Xiao, R., Zeng, G., Liang, J., 2019. Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci. Total Environ. 648, 206-217. https://doi.org/10.1016/j.scitotenv.2018.08.108.
|
Zhang, B., Wu, Y., Fang, P., 2019. Bamboo charcoal modified with Cu2+ and 3-aminopropyl trimethoxy silane for the adsorption of acid fuchsin dye:Optimization by response surface methodology and the adsorption mechanism. J. Appl. Polym. Sci. 136(27), 47728. https://doi.org/10.1002/app.47728.
|
Zhang, C., Song, Z., Shi, H., Fu, J., Qiao, Y., He, C., 2017. The effects of pretreatments and low-temperature pyrolysis on surface properties of biochar from sunflower straw as adsorption material. Bioresources 12(1), 1041-1051. https://doi.org/10.15376/biores.12.1.1041-1051.
|
Zhang, L., Zhou, X.Y., Guo, X.J., Song, X.Y., Liu, X.Y., 2011. Investigation on the degradation of acid fuchsin induced oxidation by MgFe2O4 under microwave irradiation. J. Mol. Catal. A-Chem. 335(1-2), 31-37. https://doi.org/10.1016/j.molcata.2010.11.007.
|
Zhang, T., Xin, X., Liu, H., Song, N., Wang, Y., Shi, Y., 2020. Sol-gel preparation of spherical gamma-Al2O3 with macro-mesopores as an efficient adsorbent for acid fuchsin. Micro. Nano. Lett. 15(14), 1017-1022. https://doi.org/10.1049/mnl.2020.0271.
|
Zhou, R., Zhou, R., Zhang, X., Bazaka, K., Ostrikov, K., 2019. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption. Front. Chem. Sci. Eng. 13(2), 340-349. https://doi.org/10.1007/s11705-019-1798-z.
|