Citation: | Farhad Bahmanpouri, Carlo Gualtieri, Hubert Chanson. 2023: Experiments on two-phase flow in hydraulic jump on pebbled rough bed: Part 1–Turbulence properties and particle chord time and length. Water Science and Engineering, 16(4): 359-368. doi: 10.1016/j.wse.2023.05.002 |
[1] |
Abbaspour, A., Parvini, S., Dalir, A.H., 2016. Effect of buried plates on scour profiles downstream of hydraulic jump in open channels with horizontal and reverse bed slopes. Water Science and Engineering 9(4), 329-335. https://doi.org/10.1016/j.wse.2017.01.003.
|
[2] |
Bahmanpouri, F., 2019. Experimental Study of Air Entrainment in Hydraulic Jump on Pebbled Rough Bed. PhD Dissertation. The University of Napoli Federico II, Napoli. https://doi.org/10.13140/RG.2.2.27625.16485.
|
[3] |
Bahmanpouri, F., Gualtieri, C., Chanson, H., 2022. Air-water flow properties in hydraulic jumps on rough pebbled bed. ISH Journal of Hydraulic Engineering 1-10. https://doi.org/10.1080/09715010.2022.2068354.
|
[4] |
Bahmanpouri, F., Gualtieri, C., Chanson, H., 2023. Flow patterns and free-surface dynamics in hydraulic jump on pebbled rough bed. Proceedings of the Institution of Civil Engineers 176(1), 32-49. https://doi.org/10.1680/jwama.20.00040.
|
[5] |
Cao, G., Kandzia, C., Muller, D., Heikkinen, J., Kosonen, R., Ruponen, M., 2013. Experimental study of the effect of turbulence intensities on the maximum velocity decay of an attached plane jet. Energy and Buildings 65, 127-136. https://doi.org/10.1016/j.enbuild.2013.05.041.
|
[6] |
Chachereau, Y., Chanson, H., 2011. Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science 35(6), 896-909. https://doi.org/10.1016/j.expthermflusci.2011.01.009.
|
[7] |
Chanson, H., Brattberg, T., 2000. Experimental study of the air-water shear flow in a hydraulic jump. International Journal of Multiphase Flow 26(4), 583-607. https://doi.org/10.1016/S0301-9322(99)00016-6.
|
[8] |
Chanson, H., Toombes, L., 2002. Air-water flows down stepped chutes: Turbulence and flow structure observations. International Journal of Multiphase Flow 28(11), 1737-1761. https://doi.org/10.1016/S0301-9322(02)00089-7.
|
[9] |
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. European Journal of Mechanics - B/Fluids 26(3), 367-384. https://doi.org/10.1016/j.euromechflu.2006.08.001.
|
[10] |
Chanson, H., 2010. Convective transport of air bubbles in strong hydraulic jumps. International Journal of Multiphase Flow 36(10), 798-814. https://doi.org/10.1016/j.ijmultiphaseflow.2010.05.006.
|
[11] |
Ervine, D.A., Falvey, H.T., 1987. Behavior of turbulent water jets in the atmosphere and in plunge pools. Proceedings of the Institution of Civil Engineering, Part 2 83, 295-314. https://doi.org/10.1680/iicep.1987.353.
|
[12] |
Felder, S., 2013. Air-Water Flow Properties on Stepped Spillways for Embankment Dams: Aeration, Energy Dissipation and Turbulence on Uniform, Non-uniform and Pooled Stepped Chutes. Ph.D. Dissertation. The University of Queensland, Brisbane.
|
[13] |
Felder, S., Chanson, H., 2014. Triple decomposition technique in air-water flows: Application to instationary flows on a stepped spillway. International Journal of Multiphase Flow 58, 139-153. https://doi.org/10.1016/j.ijmultiphaseflow.2013.09.006.
|
[14] |
Felder, S., Chanson, H., 2016. An Experimental Study of Air-Water Flows in Hydraulic Jumps with Channel Bed Roughness. WRL Research Report WRL 259. University of New South Wales, Sydney.
|
[15] |
Felder, S., Chanson, H., 2018. Air-Water flow patterns of hydraulic jumps on uniform beds macroroughness. Journal of Hydraulic Engineering 144(3), 04017068. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001402.
|
[16] |
Gualtieri, C., Chanson, H., 2013. Interparticle arrival time analysis of bubble distributions in a dropshaft and hydraulic jump. Journal of Hydraulic Research 51(3), 253-264.
|
[17] |
Gualtieri, C., Chanson, H., 2021. Physical and numerical modelling of air-water flows: An introductory overview. Environmental Modelling & Software 143, 105109. https://doi.org/10.1016/j.envsoft.2021.105109.
|
[18] |
Keulegan, G.H., Patterson, G.W., 1940. A criterion for instability of flow in steep channels. Eos, Transactions American Geophysical Union 21(2), 594-596. https://doi.org/10.1029/TR021i002p00594.
|
[19] |
Khanahmadi, E., Dehghani, A.A., Halaghi, M.M., Kordi, E., Bahmanpouri, F., 2022. Investigating the characteristic of hydraulic T-jump on rough bed based on experimental and numerical modeling. Modeling Earth Systems and Environment 8, 5695-5712. https://doi.org/10.1007/s40808-022-01434-2.
|
[20] |
Kramer, M., Chanson, H., 2018. Transition flow regime on stepped spillways: Air-water flow characteristics and step-cavity fluctuations. Environmental Fluid Mechanics 18(4), 947-965. https://doi.org/10.1007/s10652-018-9575-y.
|
[21] |
Lance, M., Bataille, J., 1991. Turbulence in the liquid phase of a uniform bubbly air-water flow. Journal of Fluid Mechanics 222, 95-118. https://doi.org/10.1017/S0022112091001015.
|
[22] |
Longo, S., 2010. Experiments on turbulence beneath a free-surface in a stationary field generated by a Crump weir: Free-surface characteristics and the relevant scales. Experiments in Fluids 49, 1325-1338. https://doi.org/10.1007/s00348-010-0881-5.
|
[23] |
Longo, S., 2011. Experiments on turbulence beneath a free-surface in a stationary field generated by a Crump weir: Turbulence structure and correlation with the free-surface. Experiments in Fluids 50, 201-215. https://doi.org/10.1007/s00348-010-0921-1.
|
[24] |
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research 37(4), 541-558. https://doi.org/10.1080/00221686.1999.9628267.
|
[25] |
Mouaze, D., Murzyn, F., Chaplin, J.R., 2005. Free-surface length scale estimation in hydraulic jumps. Journal of Fluids Engineering 127(6), 1191-1193. https://doi.org/10.1115/1.2060736.
|
[26] |
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Air-water interface dynamic and free-surface features in hydraulic jumps. Journal of Hydraulic Research 45(5), 679-685. https://doi.org/10.1080/00221686.2007.9521804.
|
[27] |
Murzyn, F., Chanson, H., 2009. Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environmental Fluid Mechanics 9(2) 143159. https://doi.org/10.1007/s10652-008-9077-4.
|
[28] |
Pagliara, S., Roshni, T., Carnacina, I., 2011. Turbulence, aeration and bubble features of air-water flows over macro- and intermediate roughness. Water Science and Engineering 4(2),170-184. https://doi.org/10.3882/j.issn.16742370.2011.02.005.
|
[29] |
Panidis, T., 2011. The development of the structure of water-air bubble grid turbulence. International Journal of Multiphase Flow 37(6), 565-575. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.010.
|
[30] |
Taravatrooy, N., Bahmanpouri, F., Nikoo, M.R., Gualtieri, C., Izady, A., 2021. Estimation of air-flow parameters and turbulent intensity in hydraulic jump on rough bed using Bayesian model averaging. Applied Soft Computing 103, 107165. https://doi.org/10.1016/j.asoc.2021.107165.
|
[31] |
Wang, H., 2014. Turbulence and Air Entrainment in Hydraulic Jumps. Ph.D. Dissertation. The University of Queensland, Brisbane. https://doi.org/10.14264/uql.2014.542.
|
[32] |
Wang, H., Felder, S., Chanson, H., 2014. An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique. Experiments in Fluids 55(7), 1775. https://doi.org/10.1007/s00348-014-1775-8.
|
[33] |
Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps: Free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics 13(2), 189-204. https://doi.org/10.1007/s10652-012-9254-3.
|