Volume 17 Issue 1
Mar.  2024
Turn off MathJax
Article Contents
Diana Marcela Cuesta Parra, Felipe Correa Mahecha, Andrés Felipe Rubio Pinzon, Davidcamilo Ramírez Bustos, Leonel Alveyro Teran Llorente, Miguel Fernando Jimenez Jimenez. 2024: A prototype for on-site generation of chlorinated disinfectant for use in rural aqueducts. Water Science and Engineering, 17(1): 33-40. doi: 10.1016/j.wse.2023.05.005
Citation: Diana Marcela Cuesta Parra, Felipe Correa Mahecha, Andrés Felipe Rubio Pinzon, Davidcamilo Ramírez Bustos, Leonel Alveyro Teran Llorente, Miguel Fernando Jimenez Jimenez. 2024: A prototype for on-site generation of chlorinated disinfectant for use in rural aqueducts. Water Science and Engineering, 17(1): 33-40. doi: 10.1016/j.wse.2023.05.005

A prototype for on-site generation of chlorinated disinfectant for use in rural aqueducts

doi: 10.1016/j.wse.2023.05.005
Funds:

This work was supported by the America University, the Swiss Agency for Development and Cooperation, and the Central Technical Institute.

  • Received Date: 2023-01-17
  • Accepted Date: 2023-05-10
  • Available Online: 2024-03-05
  • Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas. Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 10 L. This study evaluated sodium hypochlorite production through electrolysis in a 22-L prototype and identified the optimal operating parameters. Tests were performed using graphite electrodes with areas of 68.4 cm2 at the laboratory scale and 1 865.0 cm2 at the prototype scale. A design for experiments with different operating times, chloride concentrations, and electric current intensities was developed. The optimal operating time, sodium chloride concentration, and current intensity at the laboratory scale were 120 min, 150 g of chloride per liter, and 3 A, respectively, leading to the production of 5.02 g/L of the disinfectant with an energy efficiency of 12.21 mg of Cl2 per kilojoule. At the prototype scale, the maximum sodium hypochlorite concentration of 3.99 g of chloride per liter was achieved with an operating time of 120 min, a sodium chloride concentration of 100 g of chloride per liter, and a current intensity of 70 A, reaching an energy efficiency of 42.56 mg of Cl2 per kilojoule. In addition, this study evaluated the influences of the chloride concentration, current intensity, and operating time on the production of sodium hypochlorite at the two scales, and formulated the equations showing the trends of sodium hypochlorite production and energy efficiency in the electrochemical systems. The 22-L prototype model for production of this oxidizing substance is promising for disinfection of large volumes of water in areas that are difficult to access.

     

  • loading
  • Al-Areqi, N.A.S., Alaghbari, E.S., Saif, R., 2021. Effects of cathode materials and electrode separation on electrochemical on-site production of sodium hypochlorite using single batch reactor. Int. J. Sci. Eng. Res. 12(4), 129-133.
    Alvarado-Avila, M.I., Toledo-Carrillo, E., Dutta, J., 2022. Cerium oxide on a fluorinated carbon-based electrode as a promising catalyst for hypochlorite production. ACS Omega 7(42), 37466-37475. https://doi.org/10.1021/acsomega.2c04248.
    Baird, R., Eaton, A., Rice, E., 2017. Standard methods: For the examination of water and waste water. In: Clesceri, L.S., Greenberg, A.E., Trussel, R.R. (Eds.), Analytical Biochemistry. American Public Health Association, Washington DC, pp. 1644. https://doi.org/10.1016/0003-2697(90)90598-4.
    Baydum, V., Sarubbo, L., 2022. Feasibility of producing sodium hypochlorite for disinfection purposes using desalination brine. Biointerf. Res. Appl. Chem. 13(2), 176. https://doi.org/10.33263/BRIAC132.176.
    Campos Nogueira, R., Nigro, M., Veuthey, J., Tigalbaye, C., Bazirutwabo, B., Daba, M., Thior, F., Voillat, J., 2021. Can locally produced chlorine improve water sanitation & hygiene indicators in health care facilities in rural Chad? Health Science and Disease 22(11), 51-56. https://www.hsd-fmsb.org/index.php/hsd/article/view/3016.
    de Matos, J.F., Mota, S., Avelino, F.F., de Padua, V.L., Almeida Sampaio Brada, E., Malveira, J.Q., 2006. S oxidant solution generated by electrolysis from residue of water desalinators. Eng. Sainit. Ambient. 11(2), 143-152 (in Portuguese). https://doi.org/10.1590/S1413-41522006000200007.
    Ganijonovich, K.A., 2023. Amount of table salt when making sodium hypochlorite and temperature to product performance effect study. Journal of Survey in Fisheries Sciences 10(3S), 2055-2063.
    Ghalwa, N.A., Tamos, H., ElAskalni, M., Agha, A.R.E., 2012. Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO2 and Pb/PbO2 electrodes. Int. J. Miner. Metall. Mater. 19, 561-566. https://doi.org/10.1007/s12613-012-0596-0.
    Ghasemian, S., Asadishad, B., Omanovic, S., Tufenkji, N., 2017. Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes. Water Res. 126, 299-307. https://doi.org/10.1016/j.watres.2017.09.029.
    Girenko, D.D., Velichenko, A.B., Shmychkova, O.B., 2021. Electrolysis of NaCl solutions in flow systems. J. Chem. Technol. 29, 31-41. https://doi.org/10.15421/082111.
    Herbert, P., Franz, B., Bernard, N., 2012. Handbook of Thermoprocessing Technologies, second ed. Vulkan Verlag, Essen.
    Hsu, G.S.W., Hsia, C.W., Hsu, S.Y., 2015. Effects of process conditions on chlorine generation and storage stability of electrolyzed deep ocean water. J. Food Drug Anal. 23(4), 735-741. https://doi.org/10.1016/j.jfda.2015.05.002.
    Hsu, G.S.W., Lu, Y.F., Hsu, S.Y., 2017. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water. J. Food Drug Anal. 25(4), 759-765. https://doi.org/10.1016/j.jfda.2016.07.001.
    Ida, N., 2013. Sensors, Actuators, and Their Interfaces: A Multidisciplinary Introduction. SciTech Publishing Inc., Raleigh. https://doi.org/10.1049/pbce127e.
    Isa, M.H., Rahman, S., Kutty, M., Akmal, H., Yusoff, M., Bashir, M.J.K., Farooqi, I.H., Student, F., Campus, E., Pradesh, U., 2009. Electrochemical production of free available chlorine. In: Proceedings of International Conference on Emerging Technologies in Environmental Science and Engineering. Aligarh Muslim University, Aligarh, pp. 264-271.
    Jeong, J., Kim, C., Yoon, J., 2009. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res. 43, 895-901. https://doi.org/10.1016/j.watres.2008.11.033.
    Khalid, N.I., Sulaiman, S., Ab Aziz, N., Taip, F.S., Sobri, S., Nor-Khaizura, M.A.R., 2018. Electrolyzed water as a green cleaner: Chemical and physical characterization at different electrolysing parameters. Food Res. 2(6), 512-519. https://doi.org/10.26656/fr.2017.2(6).107.
    Khalid, N.I., Sulaiman, N.S., Ab Aziz, N., Taip, F.S., Sobri, S., Nor-Khaizura, M.A.R., 2020. Optimization of electrolysis parameters for green sanitation chemicals production using response surface methodology. Processes 8(7), 792. https://doi.org/10.3390/pr8070792.
    Lin, L., Yang, H., Xu, X., 2022. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 10, 880246. https://doi.org/10.3389/fenvs.2022.880246.
    Mitchell, B.S., 2003. An Introduction to Materials Engineering and Science. John Wiley & Sons, Hoboken. https://doi.org/10.1002/0471473359.
    Naderi, M., Nasseri, S., 2020. Optimization of free chlorine, electric and current efficiency in an electrochemical reactor for water disinfection purposes by RSM. J. Environ. Health. Sci. Eng. 18(2), 1343-1350. https://doi.org/10.1007/s40201-020-00551-3.
    National Institute of Health, 2022. Water Quality Monitoring Bulletin. National Institute of Health, Bogota.
    Nurul Aniyyah, M.S., Idhamnulhadi, Z., Azharin Shah, A.A., Lili Shakirah, H., Suhaila, A., Norazlina, H., Hajaratul Najwa, M., 2022. Electrolysis study effect on electrolyzed water as disinfectant and sanitizer. J. Phys. Conf. Ser. 2266, 012004. https://doi.org/10.1088/1742-6596/2266/1/012004.
    Portarapillo, M., Muscetta, M., Di Benedetto, A., Andreozzi, R., 2020. Risk analysis of sodium hypochlorite production process. Chem. Eng. Trans. 82, 49-54. https://doi.org/10.3303/CET2082009.
    Ralls, K., Courtney, T.H., Wulff, J., 1976. Introduction to Materials Science and Engineering, ninth ed. Wiley, Hoboken.
    Ronco, C., Mishkin, G.J., 2007. Disinfection by Sodium Hypochlorite: Dialysis Applications. Karger Medical and Scientific Publishers, Basel.
    Saha, J., Gupta, S.K., 2017. A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection. Ionics 23, 1903-1913. https://doi.org/10.1007/s11581-017-2022-0.
    Saleem, M., Chakrabarti, M.H., Hasan, D.B., Islam, M.S., Yussof, R., Hajimolana, S.A., Hussain, M.A., Khan, G.M.A., Si Ali, B., 2012. On site electrochemical production of sodium hypochlorite disinfectant for a power plant utilizing seawater. Int. J. Electrochem. Sci. 7, 3929-3938.
    Song, X., Zhao, H., Fang, K., Lou, Y., Liu, Z., Liu, C., Ren, Z., Zhou, X., Fang, H., Zhu, Y., 2019. Effect of platinum electrode materials and electrolysis processes on the preparation of acidic electrolyzed oxidizing water and slightly acidic electrolyzed water. RSC Adv. 9, 3113-3119. https://doi.org/10.1039/c8ra08929a.
    Spasojevic, M., Krstajic, N., Spasojevic, P., Ribic-Zelenovic, L., 2015. Modelling current efficiency in an electrochemical hypochlorite reactor. Chem. Eng. Res. Des. 93, 591-601. https://doi.org/10.1016/j.cherd.2014.07.025.
    Teguia, R.D., Noumi, G.B., 2021. Manganese dioxide coated on recycled graphite substrate as electrode material for sodium hypochlorite production. J. Mater. Environ. Sci. 12, 442-454.
    Un-Water, 2016. The United Nations World Water Development Report 2016: Water and Jobs. UNESCO, Paris.
    UNESCO World Water Assessment Program, 2019. The United Nations World Water Development Report 2019: Leaving No One behind. UNESCO, Paris.
    Whangchai, K., Uthaibutra, J., Phiyanalinmat, S., 2013. Effects of NaCl concentration, electrolysis time, and electric potential on efficiency of electrolyzed oxidizing water on the mortality of Penicillium digitatum in suspension. Acta Hortic. 973, 193-198. https://doi.org/10.17660/ActaHortic.2013.973.26.
    Wang, Y., Liu, Y., Wiley, D., Zhao, S., Tang, Z., 2021. Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. 9(35), 18974-18993. https://doi.org/10.1039/d1ta02745j.
    World Health Organization (WHO), 2020. Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19: Interim Guidance. WHO, New York.
    World Health Organization (WHO), 2022. Drinking-water. WHO, New York. https://www.who.int/en/news-room/fact-sheets/detail/drinking-water.
    Zaviska, F., Drogui, P., Pablo, G., 2012. Statistical optimization of active chlorine production from a synthetic saline effluent by electrolysis. Desalination 296, 16-23. https://doi.org/10.1016/j.desal.2012.03.023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return