Citation: | Ran Gong, Hui-ya Wang, Zhi-xin Hu, Yi-ping Li. 2023: Simulation of internal nitrogen release from bottom sediments in an urban lake using a nitrog. Water Science and Engineering, 16(3): 252-260. doi: 10.1016/j.wse.2023.06.002 |
Arndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments:A review and synthesis. Earth Sci. Rev. 123, 53-86. https://doi.org/10.1016/j.earscirev.2013.02.008.
|
Bormans, M., Maršálek, B., Jančula, D., 2016. Controlling internal phosphorus loadinginlakesbyphysicalmethodstoreducecyanobacterialblooms:Areview.Aquat. Ecol. 50(3), 407-422. https://doi.org/10.1007/s10452-015-9564-x.
|
Boudreau, B.P., 1996. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Comput. Geosci. 22(5), 479-496. https://doi.org/10.1016/0098-3004(95)00115-8.Brady, D.C., Testa, J.M., Di Toro, D.M., Boynton, W.R., Kemp, W.M., 2013.Sediment flux modeling:Calibration and application for coastal systems.Estuar. Coast. Shelf Sci. 117, 107-124. https://doi.org/10.1016/j.ecss.2012.11.003.
|
Chen, L., Zhao, Z., Guo, G., Li, J., Wu, W., Zhang, F., Zhang, X., 2022. Effects of muddy water irrigation with different sediment gradations on nitrogen transformation in agricultural soil of Yellow River Basin. Water Sci. Eng. 15(3), 228-236. https://doi.org/10.1016/j.wse.2021.12.005.
|
Craig, P.M., 2011. User's Manual for EFDC Explorer:A Pre/post Processor for the Environmental Fluid Dynamics Code. Dynamic Solutions, LLC, Knoxville. https://www.eemodelingsystem.com/efdcplus-theory.
|
Di Toro, D.M., 2001. Sediment Flux Modeling. Wiley-Interscience, New York.
|
Gong, R., Xu, L., Wang, D., Li, H., Xu, J., 2016. Water quality modeling for a typical urban lake based on the EFDC model. Environ. Model. Assess. 21(5), 643-655. https://doi.org/10.1007/s10666-016-9519-1.
|
Hogsett, M., Li, H., Goel, R., 2019. The role of internal nutrient cycling in a freshwater shallow alkaline lake. Environ. Eng. Sci. 36(5), 551-563.https://doi.org/10.1089/ees.2018.0422.
|
Horppila, J., 2019. Sediment nutrients, ecological status and restoration of lakes. Water Res. 160, 206-208. https://doi.org/10.1016/j.watres.2019.05.074.
|
Horppila, J., Holmroos, H., Niemistö, J., Massa, I., Nygrén, N., Schönach, P., Tapio, P., Tammeorg, O., 2017. Variations of internal phosphorus loading and water quality in a hypertrophic lake during 40 years of different management efforts. Ecol. Eng. 103, 264-274. https://doi.org/10.1016/j.ecoleng.2017.04.018.
|
Li, Y., Tang, C., Yu, Z., 2012. Uncertainty and sensitivity analysis of large shallow lake hydrodynamic models. Adv. Water Sci. 23(2), 271-277 (in Chinese).
|
Manache, G., Melching, C.S., 2004. Sensitivity analysis of a water-quality model using Latin hypercube sampling. J. Water Resour. Plann. Manag. 130(3), 232-242. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:3(232).
|
Nürnberg, G.K., LaZerte, B.D., 2016. More than 20 years of estimated internal phosphorus loading in polymictic, eutrophic Lake Winnipeg, Manitoba. J.Great Lake. Res. 42(1), 18-27. https://doi.org/10.1016/j.jglr.2015.11.003.
|
Paraska, D.W., Hipsey, M.R., Salmon, S.U., 2014. Sediment diagenesis models:Review of approaches, challenges and opportunities. Environ.Model. Software 61, 297-325. https://doi.org/10.1016/j.envsoft.2014.05.011.
|
Pei, J., Feng, M., 2020. Effects of environmental factors on the release of nitrogen and phosphorus from the sediment of the Yanming Lake, China.Chinese Journal of Environmental Engineering 14(12), 3447-3459.https://doi.org/10.12030/j.cjee.201912021 (in Chinese).
|
Pena, M.A., Katsev, S., Oguz, T., Gilbert, D., 2010. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences 7(3), 933-957. https://doi.org/10.5194/bg-7-933-2010.
|
Prakash, S., Vandenberg, J.A., Buchak, E.M., 2015. Sediment diagenesis module for CE-QUAL-W2 part 2:Numerical formulation. Environ. Model.Assess. 20(3), 249-258. https://doi.org/10.1007/s10666-015-9459-1.
|
Robson, B.J., Bukaveckas, P.A., Hamilton, D.P., 2008. Modelling and mass balance assessments of nutrient retention in a seasonally-flowing estuary(Swan River Estuary, Western Australia). Estuar. Coast. Shelf Sci. 76(2), 282-292. https://doi.org/10.1016/j.ecss.2007.07.009.
|
Rossi, G., Premazzi, G., 1991. Delay in lake recovery caused by internal loading. Water Res. 25(5), 567-575. https://doi.org/10.1016/0043-1354(91)90129-E.
|
Stein, M., 1987. Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143-151. https://doi.org/10.1080/00401706.1987.10488205.
|
Testa, J.M., Brady, D.C., Di Toro, D.M., Boynton, W.R., Cornwell, J.C., Kemp, W.M., 2013. Sediment flux modeling:Simulating nitrogen, phosphorus, and silica cycles. Estuar. Coast. Shelf Sci. 131, 245-263.https://doi.org/10.1016/j.ecss.2013.06.014.
|
Van Cappellen, P., Wang, Y., 1996. Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. Am. J. Sci. 296(3), 197-243. https://doi.org/10.2475/ajs.296.3.197.
|
Vandenberg, J.A., Prakash, S., Buchak, E.M., 2015. Sediment diagenesis module for CE-QUAL-W2. Part 1:Conceptual formulation. Environ. Model. Assess. 20(3), 239-247. https://doi.org/10.1007/s10666-014-9428-0.
|
Wan, Y., Ji, Z.G., Shen, J., Hu, G., Sun, D., 2012. Three dimensional water quality modeling of a shallow subtropical estuary. Mar. Environ. Res. 82, 76-86. https://doi.org/10.1016/j.marenvres.2012.09.007.
|
Wang, Z., Lu, S., Wu, D., Chen, F., 2017. Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite. Chem. Eng.J. 327, 505-513. https://doi.org/10.1016/j.cej.2017.06.111.
|
Wu, Y., Wen, Y., Zhou, J., Wu, Y., 2014. Phosphorus release from lake sediments:Effects of pH, temperature and dissolved oxygen. KSCE J. Civ.Eng. 18(1), 323-329. https://doi.org/10.1007/s12205-014-0192-0.
|
Yu, J., Ding, S., Zhong, J., Fan, C., Chen, Q., Yin, H., Zhang, L., Zhang, Y., 2017. Evaluation of simulated dredging to control internal phosphorus release from sediments:Focused on phosphorus transfer and resupply across the sediment-water interface. Sci. Total Environ. 592, 662-673.https://doi.org/10.1016/j.scitotenv.2017.02.219.
|
Zhu, H.W., Wang, D.Z., 2014. Relative roles of resuspended particles and pore water in release of contaminants from sediment. Water Sci. Eng. 7(3), 344-350. https://doi.org/10.3882/j.issn.1674-2370.2014.03.009.
|
Zhu, M., Zhu, G., Zhao, L., Yao, X., Zhang, Y., Gao, G., Qin, B., 2013. Influence of algal bloom degradation on nutrient release at the sedimentewater interface in Lake Taihu, China. Environ. Sci. Pollut. Control Ser. 20(3), 1803-1811. https://doi.org/10.1007/s11356-012-1084-9.
|