Volume 17 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Salman Beg, Deo Raj Kaushal. 2024: Significance of including lid thickness and particle shape factor in numerical modeling for prediction of particle trap efficiency of invert trap. Water Science and Engineering, 17(2): 166-176. doi: 10.1016/j.wse.2023.07.003
Citation: Salman Beg, Deo Raj Kaushal. 2024: Significance of including lid thickness and particle shape factor in numerical modeling for prediction of particle trap efficiency of invert trap. Water Science and Engineering, 17(2): 166-176. doi: 10.1016/j.wse.2023.07.003

Significance of including lid thickness and particle shape factor in numerical modeling for prediction of particle trap efficiency of invert trap

doi: 10.1016/j.wse.2023.07.003
  • Received Date: 2022-12-08
  • Accepted Date: 2023-07-08
  • Available Online: 2024-05-14
  • Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding. Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load. Previous three-dimensional (3D) computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions, considering particles as spheres. For two-dimensional and 3D numerical modeling, researchers assumed the lid geometry to be a thin line and a plane, respectively. In this 3D numerical study, the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software. The volume of fluid (VOF) and the realizable k-ε turbulence models were used to predict the velocity field. The two-dimensional particle image velocimetry (PIV) was used to measure the velocity field inside the invert trap. The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths. The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant. When both the lid thickness and particle shape factor were considered in the numerical modeling, trap efficiencies were underestimated, with relative errors of -8.66 % to -0.65 % in comparison to the experimental values of Mohsin and Kaushal (2017). They were also lower than the values predicted by Mohsin and Kaushal (2017), which showed an overall overestimation with errors of -2.3 % to 17.4 %.


  • loading
  • Ahadi, M., Bergstrom, D.J., Mazurek, K.A., 2020. Computational fluid-dynamics modelling of the flow and sediment transport in stormwater retention ponds:A review. Journal of Environmental Engineering 146(9), 03120008. https://doi.org/10.1061/(ASCE) EE.1943-7870.0001784.
    ANSYS, 2020. ANSYS Fluent Theory Guide (Release 2020 R1). ANSYS, Inc., Canonsburg.
    Ashley, R.M., Fraser, A., Burrows, R., Blanksby, J., 2000. The management of sediment in combined sewers. Urban Water 2(4), 263-275. https://doi.org/10.1016/S1462-0758(01)00010-3.
    Ashley, R.M., Tait, S.J., Stovin, V.R., Burrows, R., Fraser, A., Buxton, A.P., Blackwood, D.J., Saul, A.J., Blanksby, J.R., 2003. The utilisation of engineered invert traps in the management of near bed solids in sewer networks. Water Sci. Technol. 47(4), 137-148. https://doi.org/10.2166/wst.2003.0239.
    Barnard, B., Wilson, C., 1995. Stormwater Sediment Trap Literature Review and Design Consideration (Report No. 95-309). Washington State Department of Ecology, Olympia.
    Beg, S., Bhaskar, S., Mohsin, M, Kaushal, D.R., 2019. Experimental investigation of velocity distribution inside invert traps using 2D PIV method. In:Proceedings of the 19th International Conference on Transport and Sedimentation of Solid Particles. Cape Town. pp. 177-184.
    Beg, S., Kaushal, D.R., 2022. Performance analysis of rectangular SIT (sediment invert trap) for stormwater drainage system. J. Hydrol. Hydromech. 70(2), 195-212. https://doi.org/10.2478/johh-2022-0012.
    Beg, S., Kaushal, D.R., 2023. Experimental and numerical (Fluent-VOF, k-ε, DPM) study of variation of trap efficiency of irregular hexagonal SIT (sediment invert trap) for particle removal in rectangular open drains and sewers. Journal of Irrigation and Drainage Engineering 149(2), 04022049. https://doi.org/10.1061/(ASCE) IR.1943-4774.0001743.
    Bertrand-Krajewski, J.-L., Madiec, H., Moine, O., 1996. Two experimental sediment traps:Operation and solids characteristics. Water Sci. Technol. 33(9), 155-162. https://doi.org/10.2166/wst.1996.0200.
    Buevich, Y.A., 1966. Motion resistance of a particle suspended in a turbulent medium.Fluid Dyn. 1(6), 182-183. https://doi.org/10.1007/BF01022298.
    Buxton, A., Tait, S., Stovin, V., Saul, A., 2002. Developments in a methodology for the design of engineered invert traps in combined sewer systems. Water Sci. Technol. 45(7), 133-142. https://doi.org/10.2166/wst.2002.0125.
    Carmo, J.S.A.D., 2020. Physical modelling vs. numerical modelling:Complementarity and Learning. Preprint.org 2020070753. https://doi.org/10.20944/preprints202007.0753.v1.
    Chattopadhyay, K., Isac, M., Guthrie, R.I.L., 2011. Considerations in using the discrete phase model (DPM). Steel Research International 82(11), 1287-1289. https://doi.org/10.1002/srin.201000214.
    Chebbo, G., Laplace, D., Bachoc, A., Sanchez, Y., Guennec, B.L., 1996. Technical solutions envisaged in managing solids in combined sewer networks. J. Water Sci. Technol. 33(9), 237-244. https://doi.org/10.2166/wst.1996.0220.
    Dufresne, M., Vazquez, J., Terfous, A., Ghenaim, A., Poulet, J.-B., 2009. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computers and Fluids 38(5), 1042-1049. https://doi.org/10.1016/j.compfluid.2008.01.011.
    Dukov, I., Taneva, D., 2016. Determination of the particle shape factor using Cauchy's theorem and image analysis. In:Proceedings of the 21st International Scientific Conference. FPEPM, Sozopol, pp. 60-63.
    Faram, M.G., Harwood, R., 2003. A method for the numerical assessment of sediment interceptors. Water Sci. Technol. 47(4), 167-174. https://doi.org/10.2166/wst.2003.0246.
    Fraser, A.G., Ashley, R.M., Sutherland, M.M., Vollertsen, J., 1998. Sewer solids management using invert traps. Water Sci. Technol. 37(1), 139-146. https://doi.org/10.1016/S0273-1223(97)00763-4.
    Fraser, A.G., Ashley, R.M., Ghani, A.A., 2000. Inlet and sewer traps for sediment control in stormwater drainage-A Malaysian case study. In:Proceedings of the Joint Conference on Water Resources Engineering and Water Resources Planning and Management. ASCE, Minneapolis, pp. 1-8. https://doi.org/10.1061/40517(2000)151.
    Guan, D., Agarwal, P., Chiew, Y.-M., 2022. Particle entrainment from a rectangular cavity in open-channel flows. Journal of Hydraulic Engineering 148(5), 04022006. https://doi.org/10.1061/(ASCE) HY.1943-7900.0001979.
    Haider, A., Levenspiel, O., 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58(1), 63-70. https://doi.org/10.1016/0032-5910(89)80008-7.
    Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5.
    Jarman, D.S., Faram, M.G., Butler, D., Tabor, G., Stovin, V.R., Burt, D., Throp, E., 2008. Computational fluid dynamics as a tool for urban drainage system analysis:A review of applications and best practice. In:Proceedings of the 11th International Conference on Urban Drainage. Edinburgh, pp. 1-10. http://hdl.handle.net/10036/4259.
    Kaushal, D.R., Thinglas, T., Tomita, Y., Kuchii, S., Tsukamoto, H., 2012. Experimental investigation on optimization of invert trap configuration for sewer solid management. Powder Technol. 215-216, 1-14. https://doi.org/10.1016/j.powtec.2011.08.029.
    Lain, S., Sommerfeld, M.A., 2007. A study of the pneumatic conveying of nonspherical particles in a turbulent horizontal channel flow. Brazilian Journal of Chemical Engineering 24(4), 535-546. https://doi.org/10.1590/S0104-66322007000400007.
    Laurent, J., Finaud-Guyot, P., Wanko, A., Bois, P., Mose, R., 2013. Hydrodynamic of artificial wetlands at the outlet of urban catchment:Complementarity of the systemic approach and computational fluid dynamics tools. In:Proceedings of XIVe Congres de la Societe Francaise de Genie des Procedes. Paris, pp. 1-8.
    Mohsin, M., Kaushal, D.R., 2015. A 2D-CFD (VOF model) analysis of invert trap for bed load removal in an open rectangular sewer drain. Particulate Science and Technology 35(1), 54-66. https://doi.org/10.1080/02726351.2015.1131786.
    Mohsin, M., Kaushal, D.R., 2016a. 3D CFD validation of invert trap efficiency for sewer solid management using VOF model. Water Science and Engineering 9(2), 106-114. https://doi.org/10.1016/j.wse.2016.06.006.
    Mohsin, M., Kaushal, D.R., 2016b. Experimental and CFD analyses using two-dimensional and three-dimensional models for invert traps in open rectangular sewer channels. Journal of Irrigation and Drainage Engineering 143(5), 04016087. https://doi.org/10.1061/(ASCE) IR.1943-4774.0001142.
    Mohsin, M., Kaushal, D.R., 2017. Three-dimensional computational fluid dynamics (volume of fluid) modelling coupled with a stochastic discrete phase model for the performance analysis of an invert trap experimentally validated using field sewer solids. Particuology 33, 98-111. https://doi.org/10.1016/j.partic.2016.09.010.
    Morsi, S.A., Alexander, A.J., 1972. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55(2), 193-208. https://doi.org/10.1017/S0022112072001806.
    Rommel, S.H., Gelhardt, L., Welker, A., Helmreich, B., 2020. Settling of road-deposited sediment:Influence of particle density, shape, low temperatures, and deicing salt. Water 12(11), 3126. https://doi.org/10.3390/w12113126.
    Saidani, M., Shibani, A., 2014. Use of physical and numerical models in engineering design education. In:Proceedings of the International Conference on Industrial Engineering and Operations Management. Bali, pp. 61-67.
    Schmitt, F., Milisic, V., Bertrand-Krajewski, J.-L., Laplace, D., Chebbo, G., 1999. Numerical modelling of bed load sediment traps in sewer systems by density currents. Water Sci. Technol. 39(9), 153-160. https://doi.org/10.2166/wst.1999.0465.
    Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., 1995. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers and Fluids 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T.
    Shilton, A., 2000. Potential application of computational fluid dynamics to pond design. Water Sci. Technol. 42(10-11), 327-334. https://doi.org/10.2166/wst.2000.0673.
    Stovin, V.R., Saul, A.J., 1998. A computational fluid dynamics (CFD) particle tracking approach to efficiency prediction. Water Sci. Technol. 37(1), 285-293. https://doi.org/10.1016/S0273-1223(97)00780-4.
    Stovin, V.R., Saul, A.J., 2000. Computational fluid dynamics and the design of sewage storage chambers. Water Environ. J. 14(2), 103-110. https://doi.org/10.1111/j.1747-6593.2000.tb00235.x.
    Sun, R., Xiao, H., 2016. SediFoam:A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport. Computers&Geosciences 80, 207-219. https://doi.org/10.1016/j.cageo.2016.01.011.
    Tang, P., Li, H., Zeng, J., 2022. Numerical investigation of transport behaviors of nonspherical proppants in hydraulic fracturing using CFD-DEM. Particulate Science and Technology 40(2), 207-218. https://doi.org/10.1080/02726351.2021.1930301.
    Thinglas, T., Kaushal, D.R., 2008a. Comparison of two and three-dimensional modelling of invert trap for sewer solid management. Particuology 6(3), 176-184. https://doi.org/10.1016/j.partic.2007.12.003.
    Thinglas, T., Kaushal, D.R., 2008b. Three-dimensional CFD modelling for optimization of invert trap configuration to be used in sewer solids management. Particulate Science and Technology 26(5), 507-519. https://doi.org/10.1080/02726350802367951.
    Waclawiak, K., Kalisz, S., 2014. Influence of selected parameters on ash particle trajectories when modelling deposition on superheater tubes in pulverised coal boilers using fluent code. Chemical and Processing Engineering 35(3), 305-316. https://doi.org/10.2478/cpe-2014-0023.
    Wadell, H., 1932. Volume, shape, and roundness of rock particles. The Journal of Geology 40(5), 443-451. https://doi.org/10.1086/623964.
    Xie, J., Hu, P., Pähtz, T., He, Z., Cheng, N., 2022. Fluid-particle interaction regimes during the evolution of turbidity currents from a coupled LES/DEM model. Advances in Water Resources 163, 104171. https://doi.org/10.1016/j.advwatres.2022.104171.
    Yenni, Y., 2020. The Effects of Turbulent Kinetic Energy, Phosphorus Concentration, Suspended Sediment Concentration, and Time Interval of Phosphorus Loading on Phosphorus Adsorption on Suspended Sediment. Ph.D. Dissertation. The University of Manchester, Manchester.
    Zhou, Z., Kuang, S., Chu, K., Yu., A., 2010. Discrete particle simulation of particle-fluid flow:Model formulations and their applicability. Journal of Fluid Mechanics 661, 482-510. https://doi.org/10.1017/S002211201000306X.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint