Volume 17 Issue 1
Mar.  2024
Turn off MathJax
Article Contents
Ajmeria Rahul, Gundu Lokesh, Siddhartha Goswami, R.N. Ponnalagu, Radhika Sudha. 2024: Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis. Water Science and Engineering, 17(1): 62-71. doi: 10.1016/j.wse.2023.08.001
Citation: Ajmeria Rahul, Gundu Lokesh, Siddhartha Goswami, R.N. Ponnalagu, Radhika Sudha. 2024: Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis. Water Science and Engineering, 17(1): 62-71. doi: 10.1016/j.wse.2023.08.001

Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis

doi: 10.1016/j.wse.2023.08.001
  • Received Date: 2022-12-20
  • Accepted Date: 2023-07-24
  • Available Online: 2024-03-05
  • Algal blooms, the spread of algae on the surface of water bodies, have adverse effects not only on aquatic ecosystems but also on human life. The adverse effects of harmful algal blooms (HABs) necessitate a convenient solution for detection and monitoring. Unmanned aerial vehicles (UAVs) have recently emerged as a tool for algal bloom detection, efficiently providing on-demand images at high spatiotemporal resolutions. This study developed an image processing method for algal bloom area estimation from the aerial images (obtained from the internet) captured using UAVs. As a remote sensing method of HAB detection, analysis, and monitoring, a combination of histogram and texture analyses was used to efficiently estimate the area of HABs. Statistical features like entropy (using the Kullback–Leibler method) were emphasized with the aid of a gray-level co-occurrence matrix. The results showed that the orthogonal images demonstrated fewer errors, and the morphological filter best detected algal blooms in real time, with a precision of 80%. This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.

     

  • loading
  • Acharya, T., Ray, A.K., 2005. Image Processing: Principles and Applications. John Wiley & Sons, Hoboken.
    Ali, R., Kang, D., Suh, G., Cha, Y.J., 2021. Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures. Autom. ConStruct. 130, 103831. https://doi.org/10.1016/j.autcon.2021.103831.
    Armi, L., Fekri-Ershad, S., 2019a. Texture image analysis and texture classification methods - A review. Int. Online J. Image Process. Pattern Recognit. 2(1), 1-29 https://doi.org/10.48550/arXiv.1904.06554.
    Armi, L., Fekri-Ershad, S., 2019b. Texture image classification based on improved local quinary patterns. Multimed. Tool. Appl. 78(14), 18995-19018. https://doi.org/10.1007/s11042-019-7207-2.
    Bangare, S.L., Dubal, A., Bangare, P.S., Patil, S., 2015. Reviewing Otsu's method for image thresholding. Int. J. Appl. Eng. Res. 10(9), 21777-21783.
    Cetin, O., Yilmaz, G., 2016. Real-time autonomous UAV formation flight with collision and obstacle avoidance in unknown environment. J. Intell. Rob. Syst. 84(1), 415-433. https://doi.org/10.1007/s10846-015-0318-8.
    Cha, Y.J., Choi, W., Buyukozturk, O., 2017. Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 32(5), 361-378. https://doi.org/10.1111/mice.12263.
    Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S., Buyukozturk, O., 2018. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput. Aided Civ. Infrastruct. Eng. 33(9), 731-747. https://doi.org/10.1111/mice.12334.
    Chaubey, A.K., 2016. Comparison of the local and global thresholding methods in image segmentation. World J. Res. Rev. 2(1), 262989.
    Devarajan, G., Aatre, V., Sridhar C., 1991. Analysis of median filter. In: Proceedings of the XVI Annual Convention and Exhibition of the IEEE in India. IEEE, Bangalore, pp. 274-276.
    Ge, L., Li, X., Ng, A.H.M., 2016. UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia. In: Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Beijing, pp. 5422-5425.
    Giyenko, A., Im, C.Y., 2016. Intelligent UAV in smart cities using IOT. In: Proceeding of the 16th International Conference on Control, Automation and Systems (ICCAS). IEEE, Gyeongju, pp. 207-210.
    Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610-621. https://doi.org/10.1109/TSMC.1973.4309314.
    Haralick, R.M., 1979. Statistical and structural approaches to texture. Proc. IEEE 67(5), 786-804. https://doi.org/10.1109/PROC.1979.11328.
    Kang, D., Cha, Y., 2018. Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Comput. Aided Civ. Infrastruct. Eng. 33(10), 885-902. https://doi.org/10.1111/mice.12375.
    Karlson, B., Andersen, P., Arneborg, L., Cembella, A., Eikrem, W., John, U., West, J.J., Klemm, K., Kobos, J., Lehtinen, S., 2021. Harmful algal blooms and their effects in coastal seas of northern Europe. Harmful Algae 102, 101989. https://doi.org/10.1016/j.hal.2021.101989.
    Kislik, C., Dronova, I., Kelly, M., 2018. UAVs in support of algal bloom research: A review of current applications and future opportunities. Drones 2(4), 35. https://doi.org/10.3390/drones2040035.
    Knuth, K.H., 2006. Optimal Data-Based Binning for Histograms. University at Albany, Albany. https://doi.org/10.48550/arXiv.physics/0605197.
    Kumar, A.A., Lal, N., Kumar, R.N., 2021. A comparative study of various filtering techniques. In: Proceedings of the 5th International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, Tirunelveli, pp. 26-31.
    Lee, S.S., Horng, S.J., Tsai, H.R., 1999. Entropy thresholding and its parallel algorithm on the reconfigurable array of processors with wider bus networks. IEEE Trans. Image Process. 8(9), 1229-1242. https://doi.org/10.1109/83.784435.
    Liao, S., An, J., 2014. A robust insulator detection algorithm based on local features and spatial orders for aerial images. IEEE Geosci. Remote Sens. Lett. 12(5), 963-967. https://doi.org/10.1109/LGRS.2014.2369525.
    Lootens, P., Maes, W.H., De Swaef, T., Aper, J., Mertens, K., Steppe, K., Baert, J., Roldan-Ruiz, I., 2016. UAV-based remote sensing for evaluation of drought tolerance in forage grasses. In: Breeding in a World of Scarcity. Springer, Berlin, pp. 111-116.
    Mahmoudi, L., El Zaart A., 2012. A survey of entropy image thresholding techniques. In: Proceedings of the 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA). IEEE, Zouk Mosbeh, pp. 204-209.
    Meyer, D., Fraijo, E., Lo, E., Rissolo, D., Kuester, F., 2015. Optimizing UAV systems for rapid survey and reconstruction of large scale cultural heritage sites. In: Proceedings of the 2015 Digital Heritage. IEEE, Granada, pp. 151-154.
    Nithyananda, C., Ramachandra, A., Preethi, 2016. Survey on histogram equalization method based image enhancement techniques. In: Proceedings of the 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE). IEEE, Gold Coast, pp. 150-158.
    Outay, F., Mengash, H.A., Adnan, M., 2020. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transport. Res. A Policy Pract. 141, 116-129. https://doi.org/10.1016/j.tra.2020.09.018.
    Radhika, S., Tamura, Y., Matsui, M., 2013. Texture-wavelet analysis for automating wind damage detection from aerial imageries. In: Proceedings of the 3rd IEEE International Advance Computing Conference (IACC). IEEE, Ghaziabad, pp. 1246-1250.
    Ramola, A., Shakya, A.K., Van Pham, D., 2020. Study of statistical methods for texture analysis and their modern evolutions. Eng. Rep. 2(4), e12149. https://doi.org/10.1002/eng2.12149.
    Sahoo, P.K., Soltani, S., Wong, A.K., 1988. A survey of thresholding techniques. Comput. Vis. Graph Image Process 41(2), 233-260. https://doi.org/10.1016/0734-189X(88)90022-9.
    Sellner, K.G., Doucette, G.J., Kirkpatrick, G.J., 2003. Harmful algal blooms: Causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 30(7), 383-406. https://doi.org/10.1007/s10295-003-0074-9.
    Serra, J., 1994. Morphological filtering: An overview. Signal Process. 38(1), 3-11. https://doi.org/10.1016/0165-1684(94)90052-3.
    Soille, P., 2013. Morphological Image Analysis: Principles and Applications. Springer, Heidelberg.
    Torres, E., Garces, Y., Pereira, O., Rodriguez, R., 2015. Behavior study of entropy in a digital image through an iterative algorithm of the mean shift filtering. Int. J. Soft Comput. Math. Control 4(3), 1-21. https://doi.org/10.14810/ijscmc.2015.4301.
    Valavanis, K.P., Vachtsevanos, G.J., 2015. UAV applications: Introduction. In: Handbook of Unmanned Aerial Vehicles. Springer, Berlin, pp. 2639-2641.
    Wang, J., Du, E.Y., Chang, C.I., Thouin, P.D., 2002. Relative entropy-based methods for image thresholding. In: Proceedings of the 2002 IEEE International Symposium on Circuits and Systems. IEEE, Phoenix-Scottsdale, pp. II-265-II-268.
    Wang, L.L., Yu, Z.Z., Dai, H.C., Cai, Q.H., 2009. Eutrophication model for river-type reservoir tributaries and its applications. Water Sci. Eng. 2(1), 16-24. https://doi.org/10.3882/j.issn.1674-2370.2009.01.002.
    Weybright, S., Kelly, P., 2015. Algal bloom turns ocean red. In: Proceedings of OCEANS 2015. IEEE, Washington, D.C., pp. 1-4.
    Yuan, C., Liu, Z., Zhang, Y., 2015. UAV-based forest fire detection and tracking using image processing techniques. In: Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, Denver, pp. 639-643.
    Zhang, Y., Yuan, X., Li, W., Chen, S., 2017. Automatic power line inspection using UAV images. Rem. Sens. 9(8), 824. https://doi.org/10.3390/rs9080824.
    Zhang, Z., Gao, F., Ma, B., Zhang, Z., 2018. Extraction of earth surface texture features from multispectral remote sensing data. J. Electr. Comput. Eng. 2018, 9684629. https://doi.org/10.1155/2018/9684629.
    Zhou, H., Hirose, M., Greenwood, W., Xiao, Y., Lynch, J., Zekkos, D., Kamat, V., 2016. Demonstration of UAV deployment and control of mobile wireless sensing networks for modal analysis of structures. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. International Society for Optics and Photonics, Las Vegas, pp. 98031X.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (157) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return