Volume 17 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Forough Raeisi, Seyed Mohammad Ali Zomorodian, Masih Zolghadr, Hazi Mohammad Azamathulla. 2024: Sacrificial piles as a countermeasure against local scour around underwater pipelines. Water Science and Engineering, 17(2): 187-196. doi: 10.1016/j.wse.2023.08.002
Citation: Forough Raeisi, Seyed Mohammad Ali Zomorodian, Masih Zolghadr, Hazi Mohammad Azamathulla. 2024: Sacrificial piles as a countermeasure against local scour around underwater pipelines. Water Science and Engineering, 17(2): 187-196. doi: 10.1016/j.wse.2023.08.002

Sacrificial piles as a countermeasure against local scour around underwater pipelines

doi: 10.1016/j.wse.2023.08.002
  • Received Date: 2022-11-20
  • Accepted Date: 2023-07-24
  • Available Online: 2024-05-14
  • Local scour around pipelines crossing rivers or in marine environments is a significant concern. It can lead to failure of the pipelines resulting in environmental side effects and economic losses. This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles. Three sizes of sacrificial piles were examined in a linear arrangement. Sacrificial piles were installed on the upstream side of the pipeline at three distances. Maximum scour depth reduction rates below the pipeline were computed. The results showed that sacrificial piles could protect a pipeline from local scour. A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline. This sediment accumulation reduced the scour depth beneath the pipeline. Analysis of the experimental results demonstrated that the size of piles (d), the spacing between piles, and the distance between the pipe and piles (Xp) were the variables that reduced the maximum scour beneath the pipeline with a diameter of D. For the piles with d=0.40D and 0.64D, Xp=40D was the optimal distance to install a group of piles, and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions. For the piles with d=D, the greatest reduction in scour depth was achieved at Xp=50D with any desired spacings between piles, and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.


  • loading
  • Biswas, P., Barbhuiya, A.K., 2018. Countermeasure of river bend scour using a combination of submerged vanes and riprap. Int. J. Sediment Res. 33(4), 478-492. https://doi.org/10.1016/j.ijsrc.2018.04.002.
    Chiew, Y.M., 1990. Mechanics of local scour around submarine pipelines. J. Hydraul. Eng. 116(4), 515-529. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:4(515).
    Chiew, Y.M., 1991. Prediction of maximum scour depth at submarine pipelines. J. Hydraul. Eng. 117(4), 452-466. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:4(452).
    Chiew, Y.M., 1992. Effect of spoilers on scour at submarine pipelines. J. Hydraul. Eng. 118(9), 1311-1317. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1311).
    Dey, S., Singh, N.P., 2008. Clear-water scour below underwater pipelines under steady flow. J. Hydraul. Eng. 134(5), 588-600. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(588).
    Etemad-Shahidi, A., Yasa, R., Kazeminezhad, M.H., 2011. Prediction of wave-induced scour depth under submarine pipelines using machine learning approach. Appl. Ocean Res. 33(1), 54-59. https://doi.org/10.1016/j.apor.2010.11.002.
    Fredsoe, J., Sumer, B.M., 2002. The Mechanics of Scour in the Maríne Environment. World Scientific, Singapore.
    Fredsoe, J., 2016. Pipeline-seabed interaction. J. Waterw. Port, Coast. Ocean Eng. 142(6), 03116002. https://doi.org/10.1061/(ASCE) WW.1943-5460.0000352.
    Haque, M.A., Rahman, M.M., Islam, G.T., Hussain, M.A., 2007. Scour mitigation at bridge piers using sacrificial piles. Int. J. Sediment Res. 22(1), 49-59.
    Hu, R., Wang, X., Liu, H., Leng, H., 2022. Scour protection of submarine pipelines using tonic soil stabilizer solidified soil. J. Mar. Sci. Eng. 10(1), 76. https://doi.org/10.3390/jmse10010076.
    Ibrahim, A., Nalluri, C., 1986. Scour prediction around marine pipelines. In:Proceedings of the 5th International Offshore Mechanics and Arctic Engineering Symposium. ASME, New York, pp. 679-684.
    Jabari, V., Masjedi, A., Heidarnejad, M., Kamanbedast, A., Bordbar, A., 2021. Scour control around submerged pipeline on the river bed using an impermeable spoiler. Ain Shams Eng. J. 12(1), 37-45. https://doi.org/10.1016/j.asej.2020.09.001.
    Kirkgoz, M.S., Ardiclioglu, M., 1997. Velocity profiles of developing and developed open channel flow. J. Hydraul. Eng. 123(12), 1099-1105. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1099).
    Kjeldsen, S., Gjorsvik, O., Bringaker, K., Jacobsen, J., 1973. Local scour near offshore pipelines. In:Proceedings of the 2nd International Conference on Port and Ocean Engineering under Arctic Conditions (POAC). University of Iceland, Reykjavik, pp. 308-331.
    Kumar, V., Raju, K.G.R., Vittal, N., 1999. Reduction of local scour around bridge piers using slots and collars. J. Hydraul. Eng. 125(12), 1302-1305. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1302).
    Maddah Kolur, S., Kolahdouzan, F., Azadi, G., Singh, V.P., Afzalimehr, H., 2021a. Control of scouring under marine pipelines using horizontal or vertical plates. J. Civ. Eng. Res. 11(2), 46-50. https://doi.org/10.5923/j.jce.20211102.02.
    Maddah Kolur, S., Kolahdouzan, F., Eftekhari, A., Singh, V.P., Afzalimehr, H., 2021b. Experimental investigation of scouring in groups of parallel pipelines. Int. J. Hydraul. Eng. 10(2), 27-34. https://doi.org/10.5923/j.ijhe.20211002.01.
    Mao, Y., 1986. The Interaction between a Pipeline and an Erodible Bed. Ph.D. Dissertation. Technical University of Denmark, Lyngby.
    Melville, B.W., Chiew, Y.M., 1999. Time scale for local scour at bridge piers. J. Hydraul. Eng. 125(1), 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59).
    Melville, B.W., Hadfield, A.C., 1999. Use of sacrificial piles as pier scour countermeasures. J. Hydraul. Eng. 125(11), 1221-1224. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1221).
    Moncada-M, A.T., Aguirre-Pe, J., 1999. Scour below pipeline in river crossings. J. Hydraul. Eng. 125(9), 953-958. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(953).
    Najafzadeh, M., Etemad-Shahidi, A., Lim, S.Y., 2016. Scour prediction in long contractions using ANFIS and SVM. Ocean Eng. 111, 128-135. https://doi.org/10.1016/j.oceaneng.2015.10.053.
    Najafzadeh, M., Oliveto, G., 2022. Scour propagation rates around offshore pipelines exposed to currents by applying data-driven models. Water 14(3), 493. https://doi.org/10.3390/w14030493.
    Najafzadeh, M., Oliveto, G., Saberi-Movahed, F., 2022. Estimation of scour propagation rates around pipelines while considering simultaneous effects of waves and currents conditions. Water 14(10), 1589. https://doi.org/10.3390/w14101589.
    Oliveto, G., Hager, W.H., 2002. Temporal evolution of clear-water pier and abutment scour. J. Hydraul. Eng. 128(9), 811-820. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:9(811).
    Radice, A., Davari, V., 2014. Roughening elements as abutment scour countermeasures. J. Hydraul. Eng. 140(8), 06014014. https://doi.org/10.1061/(ASCE) HY.1943-7900.0000892.
    Raudkivi, A.J., Ettema, R., 1983. Clear-water scour at cylindrical piers. J. Hydraul. Eng. 109(3), 338-350. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(338).
    Shafai Bejestan, M., 2005. Basic Concepts and Applications of Physical-Hydraulic Modeling. Shahid Chamran University Press, Ahvaz (in Persian).
    Sumer, B.M., Fredsoe, J., 1990. Scour below pipelines in waves. J. Waterw. Port, Coast. Ocean Eng. 116(3), 307-323. https://doi.org/10.1061/(ASCE)0733-950X (1990)116:3(307).
    Sumer, B.M., Truelsen, C., Sichmann, T., Fredsoe, J., 2001. Onset of scour below pipelines and self-burial. Coast Eng. 42(4), 313-335. https://doi.org/10.1016/S0378-3839(00)00066-1.
    Sumer, B.M., Kirca, V.S.O., 2022. Scour and liquefaction issues for anchors and other subsea structures in floating offshore wind farms:A review. Water Sci. Eng. 15(1), 3-14. https://doi.org/10.1016/j.wse.2021.11.002.
    Wang, C., Liang, F., Yu, X., 2017. Experimental and numerical investigations on the performance of sacrificial piles in reducing local scour around pile groups. Nat. Hazards 85(3), 1417-1435. https://doi.org/10.1007/s11069-016-2634-0.
    Xie, L., Zhu, Y., Su, T.C., 2019. Scour protection of partially embedded pipelines using sloping curtains. J. Hydraul. Eng. 145(3), 04019001. https://doi.org/10.1061/(ASCE) HY.1943-7900.0001571.
    Yang, C.X., Xiao, P.Q., Zhen, B., Shen, Z.Z., Li, L., 2012a. Effects of vegetation cover on runoff and sediment in field prototype slope by experimental. In:Advances in Environmental Science and Engineering. Trans Tech Publications Ltd., Zurich, pp. 4707-4711. https://doi.org/10.4028/www.scientific.net/AMR.518-523.4707.
    Yang, L., Guo, Y., Shi, B., Kuang, C., Xu, W., Cao, S., 2012b. Study of scour around submarine pipeline with a rubber plate or rigid spoiler in wave conditions. J. Waterw. Port, Coast. Ocean Eng. 138(6), 484-490. https://doi.org/10.1061/(ASCE) WW.1943-5460.0000150.
    Yang, L., Shi, B., Guo, Y., Zhang, L., Zhang, J., Han, Y., 2014. Scour protection of submarine pipelines using rubber plates underneath the pipes. Ocean Eng. 84, 176-182. https://doi.org/10.1016/j.oceaneng.2014.04.006.
    Zhao, X., Yan, X., Zhang, X., Li, W., Ba, Q., Li, L., 2018. Progress of active thermometry method in submarine pipeline scour monitoring. In:Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASME, San Antonio. https://doi.org/10.1115/SMASIS2018-8232.
    Zhu, Y., Xie, L., Su, T.C., 2020. Scour protection effects of a geotextile mattress with floating plate on a pipeline. Sustainability 12(8), 3482. https://doi.org/10.3390/su12083482.
    Zomorodian, S.M.A., Ghaffari, H., Ghasemi, Z., 2019. Comparison of linear and triangular arrangements of submerged sacrificial piles on local scour depth around cylindrical bridge piers. Irrigation Sciences and Engineering 42(4), 167-180. https://doi.org/10.22055/jise.2018.18874.1363.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (9) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint