Volume 17 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Shivaswamy Bhaskar, Basavaraju Manu, Marikunte Yanjarappa Sreenivasa, Arlapadavu Manoj. 2024: Synthesis of plant-based biogenic jarosite nanoparticles using Azadirachta indica and Eucalyptus gunni leaf extracts and its application in Fenton degradation of dicamba. Water Science and Engineering, 17(2): 157-165. doi: 10.1016/j.wse.2023.08.003
Citation: Shivaswamy Bhaskar, Basavaraju Manu, Marikunte Yanjarappa Sreenivasa, Arlapadavu Manoj. 2024: Synthesis of plant-based biogenic jarosite nanoparticles using Azadirachta indica and Eucalyptus gunni leaf extracts and its application in Fenton degradation of dicamba. Water Science and Engineering, 17(2): 157-165. doi: 10.1016/j.wse.2023.08.003

Synthesis of plant-based biogenic jarosite nanoparticles using Azadirachta indica and Eucalyptus gunni leaf extracts and its application in Fenton degradation of dicamba

doi: 10.1016/j.wse.2023.08.003
  • Received Date: 2022-12-19
  • Accepted Date: 2023-05-09
  • Available Online: 2024-05-14
  • Bio-jarosite, an iron mineral synthesized biologically using bacteria, is a substitute for iron catalysts in the Fenton oxidation of organic pollutants. Iron nanocatalysts have been widely used as Fenton catalysts because they have a larger surface area than ordinary catalysts, are highly recyclable, and can be treated efficiently. This study aimed to explore the catalytic properties of bio-jarosite iron nanoparticles synthesized with green methods using two distinct plant species:Azadirachta indica and Eucalyptus gunni. The focus was on the degradation of dicamba via Fenton oxidation. The synthesized nanoparticles exhibited different particle size, shape, surface area, and chemical composition characteristics. Both particles were effective in removing dicamba, with removal efficiencies of 96.8 % for A. indica bio-jarosite iron nanoparticles (ABFeNPs) and 93.0 % for E. gunni bio-jarosite iron nanoparticles (EBFeNPs) within 120 min of treatment. Increasing the catalyst dosage by 0.1 g/L resulted in 7.6 % and 43.0 % increases in the dicamba removal efficiency for EBFeNPs and ABFeNPs with rate constants of 0.025 min-1 and 0.023 min-1, respectively, confirming their catalytic roles. Additionally, the high efficiency of both catalysts was demonstrated through five consecutive cycles of linear pseudo-first-order Fenton oxidation reactions.

     

  • loading
  • Ahmadi, M., Rahmani K., Rahmani A., Rahmani, H., 2017. Removal of benzotriazole by photo-Fenton like process using nano zero-valent iron:Response surface methodology with a Box-Behnken design. Polish J. Chem. Technol. 19(1), 104-112. https://doi.org/10.1515/pjct-2017-0015.
    Akbar, A., Moradi, S., Sakine, S., Ghanbari, F., Dehghanifard, E., Kakavandi, B., 2021. Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation:Enhancing synergy, catalytic performance and mechanism. Sep. Purif. Technol. 275, 119163. https://doi.org/10.1016/j.seppur.2021.119163.
    Altenor, S., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt, J., Gaspard, S., 2009. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J. Hazard. Mater. 165, 1029-1039. https://doi.org/10.1016/j.jhazmat.2008.10.133.
    Arnold, S.M., Hickey, W.J., Harris, R.F., 1995. Degradation of atrazine by Fenton's reagent:Condition optimization and product quantification. Environ. Sci. Technol. 29(8), 2083-2089. https://doi.org/10.1021/es00008a030.
    Babaei, B.K., Babaei, A.A., 2016. Heterogeneous Fenton-like oxidation of petrochemical wastewater using a magnetically. RSC Adv. 6, 84999-85011. https://doi.org/10.1039/c6ra17624k.
    Bhaskar, S., Manu, B., Sreenivasa, M.Y., 2019. Bacteriological synthesis of iron hydroxysulfate using an isolated Acidithiobacillus ferrooxidans strain and its application in ametryn degradation by Fenton's oxidation process. J. Environ. Manage. 232, 236-242. https://doi.org/10.1016/j.jenvman.2018.11.048.
    Bhaskar, S., Manu, B., Sreenivasa, M.Y., 2020. Bioleaching of iron from fly ash using a novel isolated Acidithiobacillus ferrooxidans strain and evaluation of catalytic role of leached iron in the Fenton's oxidation of Cephelaxine. J. Indian Chem. Soc. 97, 360-367.
    Bhaskar, S., Rashmishree, K.N., Manu, B.S.M.Y., 2022. Sustainable replacement of EDTA-Biojarosite for commercial iron in the Fenton's and UV-Fenton's degradation of Rhowedamine B-A process optimization using Box-Behnken method. Water Sci. Technol. 86(8), 2008-2019. https://doi.org/10.2166/wst.2022.299.
    Burbano, A.A., Dionysiou, D.D., Suidan, M.T., Richardson, T.L., 2005. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res. 39, 107-118. https://doi.org/10.1016/j.watres.2004.09.008.
    Chen, Y., Miller, C. J., Waite, T.D., 2021. Heterogeneous Fenton chemistry revisited:Mechanistic insights from ferrihydrite-mediated oxidation of formate and xxalate. Environ. Sci. Technol. 55(21), 14414-14425. https://doi.org/10.1021/acs.est.1c00284.
    Detomaso, A., Lopez, A., Lovecchio, G., Mascolo, G., Curci, R., 2003. Practical applications of the fenton reaction to the removal of chlorinated aromatic pollutants. Environ. Sci. Pollut. Res. 10(6), 379-384. https://doi.org/10.1065/espr2003.06.155.
    Devatha, C.P., Thalla, A.K., Katte, S.Y., 2016. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod. 139, 1425-1435. https://doi.org/10.1016/j.jclepro.2016.09.019.
    Drzewicz, P., Gehringer, P., Zona, R., Solar, S., Nale, G., Sawicki, J., 2005. Radiolytic degradation of the herbicide dicamba for environmental protection. Arch. Environ. Contam. Toxicol. 322, 311-322. https://doi.org/10.1007/s00244-003-0257-4.
    Egusa, K., Kaneco, S., Kawamoto, Y., Suzuki, T., 2011. Solar photocatalytic degradation of dicamba in aqueous solution and its mechanism. Journal of Japanese Society for Analytical Chemistry 60(4), 345-351.
    Eisenberg, G.M., 1943. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. 15, 327-328.
    Gaggi, A., Duccini, M., Bacci, E., Sbrilli, G., Bucci, M., Hasab El Naby, A.M., 1995. Toxicity and hazard ranking of s-triazine herbicides using microtox® two green algal species and a marine crustacean. Environ. Toxicol. Chem. 14(6), 1065-1069. https://doi.org/10.1002/etc.5620140618.
    Ghauch, A., 2001. Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere 43(8), 1109-1117. https://doi.org/10.1016/S0045-6535(00)00184-3.
    Huston, P.L., Pignatello, J.J., 1999. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Res. 33(5), 1238-1246. https://doi.org/10.1016/S0043-1354(98)00330-3.
    Jaafarzadeh, N., Kakavandi, B., Takdastan, A., 2015. Powder activated carbon/Fe3O4 hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline:Degradation mechanism and kinetic. RCS Adv. 5, 84718-84728. https://doi.org/10.1039/c5ra17953j.
    Kang, Y.W., Hwang, K., 2000. Effects of reaction conditions on the oxidation efficiency in the Fenton Process. Water Res. 34(10), 2786-2790. https://doi.org/10.1016/S0043-1354(99)00388-7.
    Karthikeyan, C., Ranjani, M., Kim, A.R., Yoo, D.J., Kumar, G.G., 2016. Synthesis of iron nanoparticles using Azadirachta indica extract and its catalytic activity toward nitrophenol reduction. J. Nanosci. Nanotechnol. 16(3), 2527-2533. https://doi.org/10.1166/jnn.2016.10793.
    Khan, E., Wirojanagud, W., Sermsai, N., 2009. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds. J. Hazard. Mater. 161, 1024-1034. https://doi.org/10.1016/j.jhazmat.2008.04.049.
    Lodha, B., Chaudhari, S., 2007. Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. J. Hazard. Mater. 148(1-2), 459-466. https://doi.org/10.1016/j.jhazmat.2007.02.061.
    Lofrano, G., Meric, S., Belgiorno, V., Napoli, R.M.A., 2007. Fenton's oxidation of various-based tanning materials. Desalination 211(1-3), 10-21. https://doi.org/10.1016/j.desal.2006.03.589.
    Maya-Trevino, M.L., Guzman-Mar, J.L., Hinojosa-Reyes, L., Ramos-Delgado, N.A., Maldonado, M.I., Hernandez-Ramirez, A., 2014. Activity of the ZnO-Fe2O3 catalyst on the degradation of dicamba and 2,4-D herbicides using simulated solar light. Ceram. Int. 40(6), 8701-8708. https://doi.org/10.1016/j.ceramint.2014.01.088.
    Meng, X., Yan, S., Wu, W., Zheng, G., Zhou, L., 2017. Heterogeneous Fenton-like degradation of phenanthrene catalyzed by schwertmannite biosynthesized using Acidithiobacillus ferrooxidans. RSC Adv. 7, 21638-21648. https://doi.org/10.1039/C7RA02713C.
    Naderi, A., Hasham, M., Gharibzadeh, F., Giannakis, S., 2023. Anchoring ZnO on spinel cobalt ferrite for highly synergic sono-photo-catalytic, surfactant-assisted PAH degradation from soil washing solutions. J. Environ. Manage. 326, 116584. https://doi.org/10.1016/j.jenvman.2022.116584.
    Neyens, E., Baeyens, J., 2003. A review of classic Fenton's peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98(1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0.
    Pattanayak, M., Mohapatra, D., Nayak, P.L., 2013. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Syzygium aromaticum (clove). Middle-East J. Sci. Res. 18(5), 623-626. https://doi.org/10.5829/idosi.mejsr.2013.18.5.11729.
    Samrot, A.V., Senthilkumar, P., Rashmitha, S., Veera, P., Sahithya, C.S., 2018. Azadirachta indica influenced biosynthesis of super-paramagnetic iron-oxide nanoparticles and their applications in tannery water treatment and X-ray imaging. Journal of Nanostructure in Chemistry 8(3), 343-351. https://doi.org/10.1007/s40097-018-0279-0.
    Sangami, S., Manu, B., 2017. Synthesis of green iron nanoparticles using laterite and their application as a Fenton-like catalyst for the degradation of herbicide Ametryn in water. Environ. Technol. Innov. 8, 150-163. https://doi.org/10.1016/j.eti.2017.06.003.
    Sangami, S., Manu, B., 2019. Catalytic efficiency of laterite based FeNPs for the mineralization of mixture of herbicides in water. Environ. Technol. 40(20), 2671-2683. https://doi.org/10.1080/09593330.2018.1449899.
    Soon, A.N., Hameed, B.H., 2011. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269(1-3), 1-16. https://doi.org/10.1016/j.desal.2010.11.002.
    Srivastav, M., Gupta, M., Agrahari, S.K., Detwal, P., 2019. Removal of refractory organic compounds from wastewater by various advanced oxidation process-A review. Current Environmental Engineering 6(1), 8-16. https://doi.org/10.2174/2212717806666181212125216.
    Wang, Z., Xiao, D., Liu, R., Guo, Y., Lou, X., Liu, J., 2014. Fenton-like degradation of reactive dyes catalyzed by biogenic jarosite. Journal of Advanced Oxidation Technologies 17(1), 1-5. https://doi.org/10.1515/jaots-2014-0114.
    Woods, J.T., Mellon, M.G., 1941. Thiocyanate method for iron:A spectrophotometric study. Ind. Eng. Chem. 18(8), 551-554.
    Yan, S., Geng, J., Guo, R., Du, Y., Zhang, H., 2017a. Hydronium jarosite activation of peroxymonosulfate for the oxidation of organic contaminant in an electrochemical reactor driven by microbial fuel cell. J. Hazard. Mater. 333, 358-368. https://doi.org/10.1016/j.jhazmat.2017.03.043.
    Yan, S., Zheng,G., Meng, X., Zhou, L., 2017b. Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions. Sep. Purif. Technol. 185, 83-93. https://doi.org/10.1016/j.seppur.2017.05.008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return