Citation: | Ming-qiang Zhan, Bo Chen, Zhong-ru Wu. 2023: Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation. Water Science and Engineering, 16(4): 408-418. doi: 10.1016/j.wse.2023.09.002 |
[1] |
Bonaldi, P., Fanelli, M., Giuseppetti, G., 1977. Displacement forecasting for concrete dams. Int. Water Power Dam Constr. 29(9), 42-50.
|
[2] |
Chen, B., Huang, Z.S., Bao, T.F., Zhu, Z., 2021. Deformation early-warning index for heightened gravity dam during impoundment period. Water Science and Engineering 14(1), 54-64. https://doi.org/10.1016/j.wse.2021.03.001.
|
[3] |
Dai, B., Gu, C.S., Zhao, E.F., Qin, X.N., 2018. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Structural Control & Health Monitoring 25(6), e2170. https://doi.org/10.1002/stc.2170.
|
[4] |
De Sortis, A., Paoliani, P., 2007. Statistical analysis and structural identification in concrete dam monitoring. Engineering Structures 29(1), 110-120. https://doi.org/10.1016/j.engstruct.2006.04.022.
|
[5] |
Dou, S.Q., Li, J.J., Kang, F., 2019. Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model. Water Science and Engineering 12(3), 188-195. https://doi.org/10.1016/j.wse.2019.09.002.
|
[6] |
Fanelli, M., 1975. Control of dam displacements. Energia Elettrica 52, 125-139.
|
[7] |
Gu, C.S., Fu, X., Shao, C.F., Shi, Z.W., Su, H.Z., 2020. Application of spatiotemporal hybrid model of deformation in safety monitoring of high arch dams: A case study. International Journal of Environmental Research and Public Health 17(1), 319. https://doi.org/10.3390/ijerph17010319.
|
[8] |
Gu, H., Yang, M., Gu, G., Huang, X., 2021. A factor mining model with optimized random forest for concrete dam deformation monitoring. Water Science and Engineering 14(4), 330-336. https://doi.org/10.1016/j.wse.2021.10.004.
|
[9] |
Jiang, Z., Chen, H., 2022. A new early warning method for dam displacement behavior based on non-normal distribution function. Water Science and Engineering 15(2), 170-178. https://doi.org/10.1016/j.wse.2022.04.001.
|
[10] |
Kang, F., Liu, J., Li, J.J., Li, S.J., 2017. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Structural Control & Health Monitoring 24(10), e1997. https://doi.org/10.1002/stc.1997.
|
[11] |
Kao, C.Y., Loh, C.H., 2013. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Structural Control & Health Monitoring 20(3), 282-303. https://doi.org/10.1002/stc.492.
|
[12] |
Li, Y.T., Bao, T.F., Gao, Z.X., Shu, X.S., Zhang, K., Xie, L.C., Zhang, Z.T., 2022. A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques. Structural Health Monitoring 21(3), 770-778. https://doi.org/10.1177/14759217211009780.
|
[13] |
Salazar, F., Moran, R., Toledo, M.A., Onate, E., 2017. Data-based models for the prediction of dam behaviour: A review and some methodological considerations. Archives of Computational Methods in Engineering 24(1), 1-21. https://doi.org/10.1007/s11831-015-9157-9.
|
[14] |
Sevim, B., Altunisik, A.C., Bayraktar, A., Akkose, M., Adanur, S., 2012. Estimation of elasticity modulus of a prototype arch dam using experimental methods. Journal of Materials in Civil Engineering 24(4), 321-329. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000361.
|
[15] |
Su, H.Z., Wen, Z.P., Sun, X.R., Yang, M., 2015. Time-varying identification model for dam behavior considering structural reinforcement. Structural Safety 57, 1-7. https://doi.org/10.1016/j.strusafe.2015.07.002.
|
[16] |
Wu, B.B., Niu, J.T., Su, H.Z., Yang, M., Wu, Z.R., Cui, X.B., 2019. An approach for deformation modulus mechanism of super-high arch dams. Structural Engineering and Mechanics 69(5), 557-566. https://doi.org/10.12989/sem.2019.69.5.557.
|
[17] |
Yang, L.F., Su, H.Z., Wen, Z.P., 2019. Improved PLS and PSO methods-based back analysis for elastic modulus of dam. Advances in Engineering Software 131, 205-216. https://doi.org/10.1016/j.advengsoft.2019.02.005.
|
[18] |
Zhang, J., Yang, Z., Jiang, J., 2017. An analysis on laws of reservoir dam defects and breaches in China. Scientia Sinica Technologica 47(12), 1313-1320. https://doi.org/10.1360/N092016-00295.
|
[19] |
Zhou, W., Li, S.L., Ma, G., Chang, X.L., Ma, X., Zhang, C., 2016. Parameters inversion of high central core rockfill dams based on a novel genetic algorithm. Science China Technological Sciences 59, 783-794. https://doi.org/10.1007/s11431-016-6017-2.
|