Volume 17 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
P.S.R. Vidya Sagar, Dharmasoth Ramadevi, Keloth Basavaiah, Sathish Mohan Botsa. 2024: Green synthesis of silver nanoparticles using aqueous leaf extract of Saussurea obvallata for efficient catalytic reduction of nitrophenol, antioxidant, and antibacterial activity. Water Science and Engineering, 17(3): 274-282. doi: 10.1016/j.wse.2023.09.004
Citation: P.S.R. Vidya Sagar, Dharmasoth Ramadevi, Keloth Basavaiah, Sathish Mohan Botsa. 2024: Green synthesis of silver nanoparticles using aqueous leaf extract of Saussurea obvallata for efficient catalytic reduction of nitrophenol, antioxidant, and antibacterial activity. Water Science and Engineering, 17(3): 274-282. doi: 10.1016/j.wse.2023.09.004

Green synthesis of silver nanoparticles using aqueous leaf extract of Saussurea obvallata for efficient catalytic reduction of nitrophenol, antioxidant, and antibacterial activity

doi: 10.1016/j.wse.2023.09.004
  • Received Date: 2022-12-12
  • Accepted Date: 2023-09-06
  • Available Online: 2024-08-24
  • Of several noble metal nanoparticles, silver nanoparticles (AgNPs) have attracted special attention due to their distinct properties, such as favorable electrical conductivity, chemical stability, and catalytic and antibacterial activities. Green synthesis of AgNPs using plant extracts containing phytochemical agents has attracted considerable interest. This environmentally friendly approach is more biocompatible and cost-efficient and has the capability of supporting large-scale synthesis. This study developed an eco-friendly method for the preparation of AgNPs using the aqueous leaf extract of Saussurea obvallata as reducing and capping agents. Ultraviolet visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), Raman, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses were conducted to characterize the synthesized AgNPs. The morphology of AgNPs was found to be spherical with an average crystallite size of 12 nm and a maximum absorbance at 410 nm. 10 mg of AgNPs had potential to reduce 4-nitrophenol to 4-aminophenol in 16 min and exhibited strong biological activities against the Gram-negative bacteria Escherichia coli (12 mm) and Gram-positive bacteria Enterococcus faecalis (13 mm). The antioxidant activity of the synthesized AgNPs was investigated against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and exhibited up to 61.21% ± 0.02% at an AgNPs concentration of 500 μg/mL.

     

  • loading
  • Abdel-Aziz, M.S., Shaheen, M.S., El-Nekeety, A.A., Abdel-Wahhab, M.A., 2014. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 18(4), 356-363. https://doi.org/10.1016/j.jscs.2013.09.011.
    Agnihotri, S., Mukherji, S., Mukherji, S., 2014. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974-3983. https://doi.org/10.1039/C3RA44507K.
    Albrecht, M.A., Evans, C.W., Raston, C.L., 2006. Green chemistry and the health implications of nanoparticles. Green Chem. 8, 417-432. https://doi.org/10.1039/B517131H.
    Arunachalam, K.D., Annamalai, S.K., Hari, S., 2013. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int. J. Nanomed. 8, 307-315. https://doi.org/10.2147/IJN.S36670.
    Bharathi, S.D., Vasantharaj, S., Bhuvaneshwari, V., 2018. Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity. Mater. Res. Express 5(5), 055404. https://doi.org/10.1088/2053-1591/aac2ef.
    Bhattacharyya, A., Bhaumik, A., Rani, P.U., Mandal, S., Epidi, T.T., 2010. Nanoparticles - a recent approach to insect pest control. Afr. J. Biotechnol. 9(24), 3489-3493.
    Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M., 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog. 22(2), 577-583. https://doi.org/10.1021/bp0501423.
    Chen, D., Qiao, X., Qiu, X.J., 2009. Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J. Mater. Sci. 44, 1076-1081. https://doi.org/10.1007/s10853-008-3204-y.
    Chen, Q.L., Chen, X.Y., Zhu, L., Chen, H.B., Ho, H.M., Yeung, W.P., Zhao, Z., Yi, T., 2016. Review on Saussurea laniceps, a potent medicinal plant known as “snow lotus”: botany, phytochemistry and bioactivities. Phytochem. Rev. 15, 537-565. https://doi.org/10.1007/s11101-015-9452-y.
    Chick, W.I., Zhu, L., Yi, T., Zhu, G.Y., Gou, X.J., Tang, Y., Xu, J., Yeung, Z., Yu, Z., Chen, H., 2015. Saussurea involucrata: A review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine. J. Ethnopharmacol. 172, 44-60. https://doi.org/10.1016/j.jep.2015.06.033.
    Dipankar, C., Murugan, S., 2012. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresineherbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces 98, 112-119. https://doi.org/10.1016/j.colsurfb.2012.04.006.
    Fan, J.Y., Chen, H.B., Zhu, L., Chen, H.L., Zhao, Z.Z., Yi, T., 2015. Saussurea medusa, source of the medicinal herb snow lotus: a review of its botany, phytochemistry, pharmacology and toxicology. Phytochem. Rev. 14, 353-366. https://doi.org/10.1007/s11101-015-9408-2.
    Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O., 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52(4), 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
    Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18, 105-106. https://doi.org/10.1088/0957-4484/18/10/105104.
    Huang, Y.F., Chang, H.T., Tan, W., 2008. Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal. Chem. 80(3), 567-572. https://doi.org/10.1021/ac702322j.
    Ibrahim, H.M.M., 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8(3), 265-275. https://doi.org/10.1016/j.jrras.2015.01.007.
    Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y., Yoshikawa, T., 2010. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6(4), 570-574. https://doi.org/10.1016/j.nano.2009.12.002.
    Kumar, C.M.K., Yugandhar, P., Savithramma, N., 2016. Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit pulp extract, characterization, and its antimicrobial properties. J. Intercult. Ethnopharmacol. 5(1), 79-85. https://doi.org/10.5455/jice.20160124113632.
    Martinez-Gutierrez, F., Olive, P.L., Banuelos, A., Orrantia, E., Nino, N., Sanchez, E., 2010. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6(5), 681-688. https://doi.org/10.1016/j.nano.2010.02.001.
    Mittal, A.K., Tripathy, D., Choudhary A., Aili, P.K., Chatterjee, A., Singh, I.P., Banerjee, U.C., 2015. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C 53, 120-127. https://doi.org/10.1016/j.msec.2015.04.038.
    Mohapatra, B., Kuriakose, S., Mohapatra, S., 2015. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract. J. Alloy. Compd. 637, 119-126. https://doi.org/10.1016/j.jallcom.2015.02.206.
    Mulvaney, P., 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3), 788-800. https://doi.org/10.1021/la9502711.
    Nandana, C.N., Christeena, M., Bharathi, D., 2022. Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications. J. Cluster Sci. 33, 269-279. https://doi.org/10.1007/s10876-020-01947-9.
    Palem, R.R., Ganesh, S.D., Saha, N., Kronek, J., Saha, P., 2016. ‘Green’ synthesis of silver polymer nanocomposites of poly (2-isopropenyl-2-oxazoline-co-N-vinylpyrrolidone) and its catalytic activity. J. Polym. Res. 9, 20-26. https://doi.org/10.1007/s10965-018-1548-9.
    Pandey, M.M., Rastogi, S., Rawat, A.K.S., 2007. Saussurea costus: Botanical, chemical and pharmacological review of an ayurvedic medicinal plant. J. Ethnopharmacol. 110(3), 379-390. https://doi.org/10.1016/j.jep.2006.12.033.
    Pant, M., Semwal, P., 2013. Brahma Kamal - the spiritually revered scientifically ignored medicinal plant. Curr. Sci. 104(6), 685-686.
    Prabhakar, S., Sakshi, P., 2019. Antioxidant, antimicrobial, and GC-MS profiling of Saussurea obvallata (Brahma Kamal) from Uttarakhand, Himalaya. Clin. Phytoscience 5(1), 12. https://doi.org/10.1186/s40816-019-0105-3.
    Rai, A., Singh, A., Ahmad, A., Sastry, M., 2006. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22(2), 736-741. https://doi.org/10.1021/la052055q.
    Rai, A., Chaudhary, M., Ahmad, A., Bhargava, S., Sastry, M., 2007. Synthesis of triangular Au core-Ag shell nanoparticles. Mater. Res. Bull. 42(7), 1212-1220. https://doi.org/10.1016/j.materresbull.2006.10.019.
    Rai, M., Yadav, A., Gade, A., 2008. Current trends in phytosynthesis of metal nanoparticles. Crit. Rev. Biotechnol. 28(4), 277-284. https://doi.org/10.1080/07388550802368903.
    Shankar, S.S., Ahmad, A., Pasricha, R., Sastry, M., 2003a. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822-1826. https://doi.org/10.1039/b303808b.
    Shankar, S.S., Ahmad, A., Sastry, M., 2003b. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 19(6), 1627-1631. https://doi.org/10.1021/bp034070w.
    Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., Sastry, M., 2004. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482-488. https://doi.org/10.1038/nmat1152.
    Sheny, D.S., Mathew, J., Philip, D., 2011. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta A Mol. Biomol. Spectrosc. 79(1), 254-262. https://doi.org/10.1016/j.saa.2011.02.051.
    Smitha, S.L., Nissamudeen, K.M., Philip, D., Gopchandran, K.G., 2008. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 71(1), 186-190. https://doi.org/10.1016/j.saa.2007.12.002.
    Song, J.Y., Kim, B.S., 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 32, 79-84. https://doi.org/10.1007/s00449-008-0224-6.
    Tharani, S., Bharathi, D., Ranjithkumar, R., 2020. Extracellular green synthesis of chitosan-silver nanoparticles using Lactobacillus reuteri for antibacterial applications. Biocatal. Agric. Biotechnol. 30, 101838. https://doi.org/10.1016/j.bcab.2020.101838.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (7) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return