Volume 17 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Lin Hu, Lin Chen, Xian-kun Wu, Rui Luo, Rong-guan Lv, Zheng-hao Fei, Feng Yang. 2024: Efficient removal of U(VI) from wastewater by a sponge-like 3D porous architecture with hybrid electrospun nanofibers. Water Science and Engineering, 17(2): 150-156. doi: 10.1016/j.wse.2023.11.001
Citation: Lin Hu, Lin Chen, Xian-kun Wu, Rui Luo, Rong-guan Lv, Zheng-hao Fei, Feng Yang. 2024: Efficient removal of U(VI) from wastewater by a sponge-like 3D porous architecture with hybrid electrospun nanofibers. Water Science and Engineering, 17(2): 150-156. doi: 10.1016/j.wse.2023.11.001

Efficient removal of U(VI) from wastewater by a sponge-like 3D porous architecture with hybrid electrospun nanofibers

doi: 10.1016/j.wse.2023.11.001

This work was supported by the Opening Project of the Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource (Grant No.2021ABPCR010) and the Natural Science Research Project of Jiangsu Higher Education Institutions of China (Grants No.20KJB150035,21KJD610004,and 21KJA530004).

  • Received Date: 2022-11-19
  • Accepted Date: 2023-10-29
  • Available Online: 2024-05-14
  • Removal of uranium(VI) from nuclear wastewater is urgent due to the global nuclear energy exploitation. This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques. The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile (PAN) and SiO2. As a supporting material, the surface of fibrous SiO2 could be further functionalized by cyano groups via (3-cyanopropyl) triethoxysilane. All the cyano groups were turned into amidoxime (AO) groups to obtain a amidoxime-functionalized sponge (PAO/SiO2-AO) through the subsequent amidoximation process. The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12mg/g, a large adsorption coefficient of 4.0×104 mL/g, and a high removal efficiency of 97.59 %. The UO22+ adsorption kinetics perfectly conformed to the pseudo-second-order reaction. The sorbent also exhibited an excellent selectivity for UO22+ with other interfering metal ions.


  • loading
  • Cui, D.Q., Low, J., Spahiu, K., 2011. Environmental behaviors of spent nuclear fuel and canister materials. Energy Environ. Sci. 4, 2537-2545. https://doi.org/10.1039/c0ee00582g.
    Darekar, M., Singh, K.K., Sapkale, P., Goswami, A.K., Mukhopadhyay, S., Shenoy, K.T., 2018. On microfluidic solvent extraction of uranium. Chemical Engineering and Processing-Process Intensification 132, 65-74. https://doi.org/10.1016/j.cep.2018.08.007.
    Endrizzi, F., Rao, L., 2014. Chemical speciation of uranium (VI) in marine environments:Complexation of calcium and magnesium ions with[(UO2)(CO3)3] 4-and the effect on the extraction of uranium from seawater. Chemistry A European Journal 20(44), 14499-14506. https://doi.org/10.1002/chem.201403262.
    Feng, M.L., Debajit, S., Qi, X.H., Du, K.Z., Huang, X.Y., Kanatzidis, M.G., 2018. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J. Am. Chem. Soc. 138(38), 12578-12585. https://doi.org/10.1021/jacs.6b07351.
    Griggs, C.S., Barber, P.S., Kelley, S.P., Moser, R.D., Seiter, J.M., Thomas, C.C., Coleman, J.G., Medina, V.F., Rogers, R.D., 2014. Biomimetic mineralization of uranium by etabolically-inactive shrimp shell. Cryst. Growth Des. 14(12), 6172-6176. https://doi.org/10.1021/cg5015576.
    Hao, M., Chen, Z., Liu, X., Liu, X., Zhang, J., Yang, H., Geoffrey, I.N.W., Wang, X.K., Ma, S.Q., 2022. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry 4(7), 2294-2307. https://doi.org/10.31635/ccschem.022.202201897.
    Hsu, P.C., Wang, S., Wu, H., 2013. Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat. Commun. 4, 2522. https://doi.org/10.1038/ncomms3522.
    Hu, L., Yan, X.W., Yao, C.G., Deng, S.Y., Gao, X.M., Zhang, X.J., Shan, D., 2016. Preparation of amidoximated coaxial electrospun nanofibers for uranyl uptake and their electrochemical properties. Separation and Purification Technology 171, 44-51. https://doi.org/10.1016/j.seppur.2016.07.024.
    Kim, J., Tsouris, C., Mayes, R.T., Oyola, Y., Saito, T., Janke, C.J., Dai, S., Schneider, E., Sachde, D., 2013. Recovery of uranium from seawater:A review of current status and future research needs. Sep. Sci. Technol. 48(3), 367-387. https://doi.org/10.1080/01496395.2012.712599.
    Li, D., Xia, Y.N., 2004. Electrospinning of nanofibers:Reinventing the wheel?Adv. Mater. 16(14), 1151-1170. https://doi.org/10.1002/adma.200400719.
    Li, J., Lu, Y., Yang, D., Su, Q., Liu, Y., Zhao, H., 2011. Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 12(5), 1860-1867. https://doi.org/10.1021/bm200205z.
    Liang, H.W., Guan, Q.F., Zhu, Z., 2012. Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Materials 4, e19. https://doi.org/10.1038/am.2012.34.
    Ling, L., Zhang, W.X., 2015. Enrichment and encapsulation of uranium with iron nanoparticle. J. Am. Chem. Soc. 137(8), 2788-2791. https://doi.org/10.1021/ja510488r.
    Liu, X.L., Verma, G., Chen, Z.S., Hu, B.W., Huang, Q.F., Yang, H., Ma, S.Q., Wang, X.K., 2022a. Metal-organic framework nanocrystal-derived hollow porous materials:Synthetic strategies and emerging applications. The Innovation 3(5), 100281. https://doi.org/10.1016/j.xinn.2022.100281.
    Liu, X.L., Xie, Y.H., Hao, M.J., Chen, Z.S., Yang, H., Geoffrey, I.N.W., Ma, S.Q., Wang, X.K., 2022b. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Adv. Sci. 9(23), 2201735. https://doi.org/10.1002/advs.202201735.
    Patrick, S.B., Kelley, S.P., Rogers, R.D., 2012. Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via η2 coordination. RSC Advances 2(22), 8526-8530. https://doi.org/10.1039/C2RA21344C.
    Patrick, S.B., Kelley, S.P., Griggs, C.S., Wallacea, S., Rogers, R.D., 2014. Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater:Seeking the strength of chitin and the chemical functionality of chitosan. Green Chem. 16(4), 1828-1836. https://doi.org/10.1039/c4gco0092g.
    Rodney, C.E., 2008. Nuclear fuel cycle:Environmental impact. MRS Bulletin 33, 338-340. https://doi.org/10.1557/mrs2008.68.
    Si, Y., Yu, J., Tang, X., Ge, J., Ding, B., 2014. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802-5810. https://doi.org/10.1038/ncomms6802.
    Tamada, M., 2009. Current status of technology for collection of uranium from seawater. In:Zichichi, A.(Ed.), The Science and Culture Series-Nuclear Strategy and Peace Technology. International Seminar on Nuclear War and Planetary Emergencies-42nd Session. World Scientific, Singapore, pp. 243-252. https://doi.org/10.1142/9789814327503_0026.
    Wang, X., Ding, B., Sun, G., Wang, M., Yu, J., 2013. Electro-spinning/netting:A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog. Mater. Sci. 58(8), 1173-1243. https://doi.org/10.1016/j.pmatsci.2013.05.001.
    Yahorava, V., Bazhko, V., 2018. Polythionate formation during uranium recovery from sulphide flotation concentrate. Journal of the Southern African Institute of Mining and Metallurgy 118, 119-124. https://doi.org/10.17159/2411-9717/2018/v118n2a4.
    Yu, S., Tang, H., Zhang, D., Wang, S., Qiu, M., Song, G., Fu, D., Hu, B., Wang, X., 2022. MXenes as emerging nanomaterials in water purification and environmental remediation. Science of The Total Environment 811, 152280. https://doi.org/10.1016/j.scitotenv.2021.152280.
    Zhang, W., Zhang, Y., Lu, C., Deng, Y., 2012. Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J. Mater. Chem. 2012, 22, 11642-11650. https://doi.org/10.1039/C2JM30688C.
    Zhang, Y., Liu, H., Gao, F., Tan, X., Cai, Y., Hu, B., Huang, Q., Fang, M., Wang, X., 2022. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 4(4), 100078. https://doi.org/10.1016/j.enchem.2022.100078.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint