Volume 17 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Amir Muhammad Noh Amin Abdul Rahman, Arjulizan Rusli, Muhammad Khalil Abdullah, Raa Khimi Shuib, Zuratul Ain Abdul Hamid, Ku Marsilla Ku Ishak, Muaz Mohd Zaini Makhtar, Mariatti Jaafar, Mohamad Danial Shafiq. 2024: A review of microplastic surface interactions in water and potential capturing methods. Water Science and Engineering, 17(4): 361-370. doi: 10.1016/j.wse.2023.11.008
Citation: Amir Muhammad Noh Amin Abdul Rahman, Arjulizan Rusli, Muhammad Khalil Abdullah, Raa Khimi Shuib, Zuratul Ain Abdul Hamid, Ku Marsilla Ku Ishak, Muaz Mohd Zaini Makhtar, Mariatti Jaafar, Mohamad Danial Shafiq. 2024: A review of microplastic surface interactions in water and potential capturing methods. Water Science and Engineering, 17(4): 361-370. doi: 10.1016/j.wse.2023.11.008

A review of microplastic surface interactions in water and potential capturing methods

doi: 10.1016/j.wse.2023.11.008
Funds:

This work was supported by the Universiti Sains Malaysia Apex Era Research Grant (Grant No.1001.PBAHAN.881008).

  • Received Date: 2022-11-23
  • Accepted Date: 2023-11-24
  • Microplastics are emerging micropollutants in water threatening aquatic and land organisms. The microplastic–water system is complicated due to the multiple constituents in the water system and the minuscule size of the plastic waste. Although typical plastic-based materials are inert, the behavior of fragmented plastics is arbitrary and indefinite. When exposed to erratic water environments with the presence of organic and synthetic impurities, pH, temperature, and salt, microplastic surfaces may be potentially active and generate charges in water. These phenomena determine microplastics in water as a colloidal system. The classical Derjaguin Landau Verwey and Overbeek (DLVO) theory can be used to identify the microplastic surface behavior in water. The modification of microplastic surfaces eventually determines the overall interactions between microplastics and other constituents in water. Moreover, the geometry of microplastics and additives present in microcontaminants play a crucial role in their net interactions. Hence, multiple microplastic removal techniques, such as coagulation, filtration, and air flotation, can be developed to address the issue. In many cases, a combination of these methods may be needed to achieve the overall procedure in water treatment plants or generic water systems. Selection of an appropriate microplastic removal technique is crucial and should be based on the water environment and intended water use to ensure its safety.

     

  • loading
  • Abdurahman, A., Cui, K., Wu, J., Li, S., Gao, R., Dai, J., Liang, W., Zeng, F., 2020. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis. Ecotoxicogical and Environment Safety 198, 110658. https://doi.org/10.1016/j.ecoenv.2020.110658.
    Aiken, G.R., Hsu-Kim, H., Ryan, J.N., 2011. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environmental Science and Technology 45(8), 3196-3201. https://doi.org/10.1021/es103992s.
    Akarsu, C., Kumbur, H., Kideys, A.E., 2021. Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science and Technology 84(7), 1648-1662. https://doi.org/10.2166/wst.2021.356.
    Al Harraq, A., Bharti, B., 2022. Microplastics through the lens of colloid science. ACS Environment Au 2(1), 3-10. https://doi.org/10.1021/acsenvironau.1c00016.
    Alfaro-Nunez, A., Astorga, D., Caceres-Farias, L., Bastidas, L., Soto Villegas, C., Macay, K.C., Christensen, J.H., 2021. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galapagos. Scientific Reports 11(1), 6424. https://doi.org/10.1038/s41598-021-85939-3.
    Ali, M., Ueki, T., Tsurumi, D., Hirai, T., 2011. Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator. Langmuir 27(12), 7902-7908. https://doi.org/10.1021/la2009489.
    Andrade, H., Gluge, J., Herzke, D., Ashta, N.M., Nayagar, S.M., Scheringer, M., 2021. Oceanic long-range transport of organic additives present in plastic products: An overview. Environmental Sciences Europe 33(1), 85. https://doi.org/10.1186/s12302-021-00522-x.
    Arnold, S.R., Grubb, T.P.,Harvey, P.J., 1995. Recent applications of dissolved air flotation pilot studies and full scale design. Water Science and Technology 31(3), 327-340. https://doi.org/10.1016/0273-1223(95)00227-E.
    Atugoda, T., Vithanage, M., Wijesekara, H., Bolan, N., Sarmah, A.K., Bank, M.S., You, S., Ok, Y.S., 2021. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environmental International 149, 106367. https://doi.org/10.1016/j.envint.2020.106367.
    Bouzid, N., Anquetil, C., Dris, R., Gasperi, J., Tassin, B., Derenne, S., 2022. Quantification of microplastics by pyrolysis coupled with gas chromatography and mass spectrometry in sediments: Challenges and implications. Microplastics 1(2), 229-239. https://doi.org/10.3390/microplastics1020016.
    Browne, M.A., 2015. Sources and pathways of microplastics to habitats. In: Bergmann, M., Gutow, L., Klages, M. (Eds.), Marine Anthropogenic Litter. Springer International Publishing, Cham, pp. 229-244.
    Cabernard, L., Roscher, L., Lorenz, C., Gerdts, G., Primpke, S., 2018. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environmental Science and Technology 52(22), 13279-13288. https://doi.org/10.1021/acs.est.8b03438.
    Caputo, F., Vogel, R., Savage, J., Vella, G., Law, A., Della Camera, G., Hannon, G., Peacock, B., Mehn, D., Ponti, J., 2021. Measuring particle size distribution and mass concentration of nanoplastics and microplastics: Addressing some analytical challenges in the sub-micron size range. Journal of Colloid and Interface Sciences 588, 401-417. https://doi.org/10.1016/j.jcis.2020.12.039.
    Cescon, A., Jiang, J.-Q., 2020. Filtration process and alternative filter media material in water treatment. Water 12(12), 3377. https://doi.org/10.3390/w12123377.
    Cowger, W.C., Gray, A.B., Eriksen, M., Moore, C.J., Thiel, M., 2019. Evaluating wastewater effluent as a source of microplastics in environmental samples. In: Karapanagioti, H.K., Kalavrouziotis, I.K. (Eds.), Microplastics in Water and Wastewater. IWA Publishing, London, pp. 109-131.
    Crini, G., Lichtfouse, E., 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters 17(1), 145-155. https://doi.org/10.1007/s10311-018-0785-9.
    Doughty, R., Eriksen, M., 2014. The case for a ban on microplastics in personal care products. Tulane Environmental Law Journal 27(2), 277-298.
    Edzwald, J.K., 1995. Principles and applications of dissolved air flotation. Water Science and Technology 31(3), 1-23. https://doi.org/10.1016/0273-1223(95)00200-7.
    Esfandiari, A., Mowla, D., 2021. Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process Safety and Environmental Protection 151, 341-354. https://doi.org/10.1016/j.psep.2021.05.027.
    Fortin, S., Song, B., Burbage, C., 2019. Quantifying and identifying microplastics in the effluent of advanced wastewater treatment systems using Raman microspectroscopy. Marine Pollution Bulletin 149, 110579. https://doi.org/10.1016/j.marpolbul.2019.110579.
    Godoy, V., Blazquez, G., Calero, M., Quesada, L., Martin-Lara, M.A., 2019. The potential of microplastics as carriers of metals. Environmental Pollution 255, 113363. https://doi.org/10.1016/j.envpol.2019.113363.
    Gouin, T., van Egmond, R., Price, O.R., Hodges, J.E.N., 2012. Prioritising chemicals used in personal care products in China for environmental risk assessment: Application of the RAIDAR model. Environmental Pollution 165, 208-214. https://doi.org/10.1016/j.envpol.2011.12.030.
    Hauser, E.A., Dewey, B.Jr., 1941. Creaming of rubber latex. Industrial & Engineering Chemistry Research 33(1), 127-130.
    Hongprasith, N., Kittimethawong, C., Lertluksanaporn, R., Eamchotchawalit, T., Kittipongvises, S., Lohwacharin, J., 2020. IR microspectroscopic identification of microplastics in municipal wastewater treatment plants. Environmental Sciences Pollution Research 27(15), 18557-18564. https://doi.org/10.1007/s11356-020-08265-7.
    Huber, C., Klimant, I., Krause, C., Werner, T., Mayr, T., Wolfbeis, O.S., 2000. Optical sensor for seawater salinity. Fresenius' Journal of Analytical Chemistry 368(2), 196-202. https://doi.org/10.1007/s002160000493.
    Israelachvili, J.N., 2011. Intermolecular and Surface Forces. Academic Press, New York.
    Jang, M.-H., Kim, M.-S., Han, M., Kwak, D.-H., 2022. Experimental application of a zero-point charge based on pH as a simple indicator of microplastic particle aggregation. Chemosphere 299, 134388. https://doi.org/10.1016/j.chemosphere.2022.134388.
    Johansen, M.P., Prentice, E., Cresswell, T., Howell, N., 2018. Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm. Journal of Environmental Radioactive 190-191, 130-133. https://doi.org/10.1016/j.jenvrad.2018.05.001.
    Kay, P., Hiscoe, R., Moberley, I., Bajic, L., McKenna, N., 2018. Wastewater treatment plants as a source of microplastics in river catchments. Environmental Sciences Pollution Research 25(20), 20264-20267. http://doi.org/10.1007/s11356-018-2070-7.
    Khuyen, V.T.K., Le, D.V., Anh, L.H., Fischer, A.R., Dornack, C., 2021. Investigating the correlation of microplastic pollution between seawater and marine salt using micro-Raman spectroscopy. Frontiers in Marine Science 8, 735975. https://doi.org/10.3389/fmars.2021.735975.
    Lapointe, M., Farner, J.M., Hernandez, L.M., Tufenkji, N., 2020. Understanding and improving microplastic removal during water treatment: Impact of coagulation and flocculation. Environmental Science and Technology 54(14), 8719-8727. https:/doi.org/10.1021/acs.est.0c00712.
    Li, Y., Li, M., Li, Z., Yang, L., Liu, X., 2019. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic. Chemosphere 231, 308-314. https://doi.org/10.1016/j.chemosphere.2019.05.116.
    Li, Y., Zhang, Y., Su, F., Wang, Y., Peng, L., Liu, D., 2022. Adsorption behaviour of microplastics on the heavy metal Cr(VI) before and after ageing. Chemosphere 302, 134865. https://doi.org/10.1016/j.chemosphere.2022.134865.
    Lin, Z., Hu, Y., Yuan, Y., Hu, B.,Wang, B., 2021. Comparative analysis of kinetics and mechanisms for Pb(II) sorption onto three kinds of microplastics. Ecotoxicological and Environmental Safety 208, 111451. https://doi.org/10.1016/j.ecoenv.2020.111451.
    Liu, R., Li, Z., Liu, F., Dong, Y., Jiao, J., Sun, P., Rm, E.W., 2021. Microplastic pollution in Yellow River, China: Current status and research progress of biotoxicological effects. China Geology 4(4), 585-592. https://doi.org/10.31035/cg2021081.
    Ma, B., Xue, W., Hu, C., Liu, H., Qu, J., Li, L., 2019. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal 359, 159-167. https://doi.org/10.1016/j.cej.2018.11.155.
    Mammo, F.K., Amoah, I.D., Gani, K.M., Pillay, L., Ratha, S.K., Bux, F., Kumari, S., 2020. Microplastics in the environment: Interactions with microbes and chemical contaminants. Science of The Total Environment 743, 140518. https://doi.org/10.1016/j.scitotenv.2020.140518.
    Mansa, R., Zou, S., 2021. Thermogravimetric analysis of microplastics: A mini review. Environmental Advances 5, 100117. https://doi.org/10.1016/j.envadv.2021.100117.
    Mao, Y., Cates, M.E., Lekkerkerker, H.N.W., 1995. Depletion force in colloidal systems. Physica A: Statistical Mechanics and Its Applications 222(1), 10-24. https://doi.org/10.1016/0378-4371(95)00206-5.
    Marazuela, M.D., Klaiber, M., Moreno-Gordaliza, E., Barata, A., Gomez-Gomez, M.M., 2022. Safety assessment of commercial antimicrobial food packaging: Triclosan and microplastics, a closer look. Food Packaging and Shelf Life 31, 100780. https://doi.org/10.1016/j.fpsl.2021.100780.
    Miranda, R., Latour, I., Blanco, A., 2020. Understanding the efficiency of aluminum coagulants used in dissolved air flotation (DAF). Frontiers in Chemistry 8, 27. https://doi.org/10.3389/fchem.2020.00027.
    Mohd-Salleh, S.N.A., Zin, N., Othman, N., 2019. A review of wastewater treatment using natural material and its potential as aid and composite coagulant. Sains Malaysiana 48, 155-164. https://doi.org/10.17576/jsm-2019-4801-18.
    Moran, S., 2018. An Applied Guide to Water and Effluent Treatment Plant Design. Butterworth-Heinemann, Oxford Burlington.
    Natesan, U., Vaikunth, R., Kumar, P., Ruthra, R., Srinivasalu, S., 2021. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere 277, 130263. https://doi.org/10.1016/j.chemosphere.2021.130263.
    Ngai, T., Xing, X., Jin, F., 2008. Depletion attraction between a polystyrene particle and a hydrophilic surface in a pluronic aqueous solution. Langmuir 24(24), 13912-13917. https://doi.org/10.1021/la802529q.
    Nguyen, T.-B., Ho, T.-B.-C., Huang, C.P., Chen, C.-W., Chen, W.-H., Hsieh, S., Hsieh, S.-L., Dong, C.-D., 2022. Adsorption of lead(II) onto PE microplastics as a function of particle size: Influencing factors and adsorption mechanism. Chemosphere 304, 135276. https://doi.org/10.1016/j.chemosphere.2022.135276.
    Pal, P., 2015. Groundwater Arsenic Remediation: Treatment Technology and Scale Up. Butterworth-Heinemann, Oxford Burlington.
    Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., Janda, V., 2018. Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment 643, 1644-1651. https://doi.org/10.1016/j.scitotenv.2018.08.102.
    Pizzichetti, A.R.P., Pablos, C., Alvarez-Fernandez, C., Reynolds, K., Stanley, S., Marugan, J., 2021. Evaluation of membranes performance for microplastic removal in a simple and low-cost filtration system. Case Studies in Chemical Environmental Engineering 3, 100075. https://doi.org/10.1016/j.cscee.2020.100075.
    Pramanik, B.K., Pramanik, S.K., Monira, S., 2021. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere 282, 131053. https://doi.org/10.1016/j.chemosphere.2021.131053.
    Rhein, F., Nirschl, H., Kaegi, R., 2022. Separation of microplastic particles from sewage sludge extracts using magnetic seeded filtration. Water Research X 17, 100155. https://doi.org/10.1016/j.wroa.2022.100155.
    Rodrigues, J.P., Duarte, A.C., Santos-Echeandia, J., 2022. Interaction of microplastics with metal(oid)s in aquatic environments: What is done so far? Journal of Hazardous Materials Advances 6, 100072. https://doi.org/10.1016/j.hazadv.2022.100072.
    Rogers, J., Dowsett, A.B., Dennis, P.J., Lee, J.V., Keevil, C.W., 1994. Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Applied Environmental Microbiology 60(5), 1585-1592. https://doi.org/10.1128/aem.60.5.1585-1592.1994.
    Romera-Castillo, C., Pinto, M., Langer, T. M., Alvarez-Salgado, X. A.,Herndl, G. J., 2018. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nature Communication 9(1), 1430. https://doi.org/10.1038/s41467-018-03798-5.
    Romera-Castillo, C., Birnstiel, S., Alvarez-Salgado, X.A., Sebastian, M., 2022. Aged plastic leaching of dissolved organic matter is two orders of magnitude higher than virgin plastic leading to a strong uplift in marine microbial activity. Frontier in Marine Sciences 9, 861557. https://doi.org/10.3389/fmars.2022.861557.
    Rozman, U., Turk, T., Skalar, T., Zupancic, M., Korosin, N.C., Marinsek, M., Olivero-Verbel, J., Kalcikova, G., 2021. An extensive characterization of various environmentally relevant microplastics - Material properties, leaching and ecotoxicity testing. Science of The Total Environment 773, 145576. https://doi.org/10.1016/j.scitotenv.2021.145576.
    Rybak, A.S., 2018. Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecological Indices 85, 253-261. https://doi.org/10.1016/j.ecolind.2017.10.061.
    Sembiring, E., Fajar, M., Handajani, M., 2021. Performance of rapid sand filter-single media to remove microplastics. Water Supply 21(5), 2273-2284. https://doi.org/10.2166/ws.2021.060.
    Sharma, S., Chatterjee, S., 2017. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environmental Sciences and Pollution Research 24(27), 21530-21547. https://doi.org/10.1007/s11356-017-9910-8.
    Shih, C.-Y., Wang, Y.-H., Chen, Y.-J., Chen, H.-A., Lin, A.Y.-C., 2021. Enhanced sorption of the UV filter 4-methylbenzylidene camphor on aged PET microplastics from both experimental and theoretical perspectives. RSC Advances 11(51), 32494-32504. https://doi.org/10.1039/D1RA05013C.
    Smith, A.M., Lee, A.A., Perkin, S., 2016. The electrostatic screening length in concentrated electrolytes increases with concentration. Journal of Physical Chemistry Letters 7(12), 2157-2163. https://doi.org/10.1021/acs.jpclett.6b00867.
    Talvitie, J., Mikola, A., Koistinen, A.,Setala, O., 2017. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research 123, 401-407. https://doi.org/10.1016/j.watres.2017.07.005.
    Tang, K.H.D., Hadibarata, T., 2021. Microplastics removal through water treatment plants: Its feasibility, efficiency, future prospects and enhancement by proper waste management. Environmental Challenges 5, 100264. https://doi.org/10.1016/j.envc.2021.100264.
    Temesgen, T., Bui, T.T., Han, M., Kim, T., Park, H., 2017. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Sciences 246, 40-51. https://doi.org/10.1016/j.cis.2017.06.011.
    Torres, F.G., Dioses-Salinas, D.C., Pizarro-Ortega, C.I., De-la-Torre, G.E., 2021. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Science of The Total Environment 757, 143875. https://doi.org/10.1016/j.scitotenv.2020.143875.
    Tu, C., Chen, T., Zhou, Q., Liu, Y., Wei, J., Waniek, J.J., Luo, Y., 2020. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Science of The Total Environment 734, 139237. https://doi.org/10.1016/j.scitotenv.2020.139237.
    Tziourrou, P., Bourikas, K., Karapanagioti, H.K., 2020. Measuring the size and the charge of microplastics in aqueous suspensions with and without microorganisms using a zeta-sizer meter. In: Proceedings of the 2nd International Conferece on Microplastic Pollution in the Mediterranean Sea. Springer, Cham, pp. 250-254. https://doi.org/10.1007/978-3-030-45909-3_39.
    Uurasjarvi, E., Hartikainen, S., Setala, O., Lehtiniemi, M.,Koistinen, A., 2020. Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake. Water Environment Research 92(1), 149-156. https://doi.org/10.1002/wer.1229.
    Waggett, F., Shafiq, M.D., Bartlett, P., 2018. Failure of Debye-Huckel screening in low-charge colloidal suspensions. Colloids Interface 2(4), 51. https://doi.org/10.3390/colloids2040051.
    Wan, H., Wang, J., Sheng, X., Yan, J., Zhang, W., Xu, Y., 2022. Removal of polystyrene microplastics from aqueous solution using the metal-organic framework material of ZIF-67. Toxics 10(2), 70. https://doi.org/10.3390/toxics10020070.
    Wang, C., Wang, H., Fu, J., Gu, G., 2014. Effects of additives on PVC plastics surface and the natural flotability. Colloids and Surfaces A: Physicochemical and Engineering Aspects 441, 544-548. https://doi.org/10.1016/j.colsurfa.2013.10.010.
    Wang, C., Wang, H., Gu, G., Fu, J., Lin, Q., Liu, Y., 2015. Interfacial interactions between plastic particles in plastics flotation. Waste Management 46, 56-61. https://doi.org/10.1016/j.wasman.2015.08.041.
    Wang, Y., Gu, F., Ni, L., Liang, K., Marcus, K., Liu, S., Yang, F., Chen, J., Feng, Z., 2017. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale 9(46), 18318-18325. https://doi.org/10.1039/C7NR05951E.
    Wang, Y., Li, Y., Tian, L., Ju, L., Liu, Y., 2021a. The removal efficiency and mechanism of microplastic enhancement by positive modification dissolved air flotation. Water Environment Research 93(5), 693-702. https://doi.org/10.1002/wer.1352.
    Wang, Y., Sun, W., Ding, L., Liu, W., Tian, L., Zhao, Y., Zhang, M., Wang, X., 2021b. A study on the feasibility and mechanism of enhanced co-coagulation dissolved air flotation with chitosan-modified microbubbles. Journal of Water Process Engineering 40, 101847. https://doi.org/10.1016/j.jwpe.2020.101847.
    Wang, Z., Lin, T., Chen, W., 2020. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Science of The Total Environment 700, 134520. https://doi.org/10.1016/j.scitotenv.2019.134520.
    Woo, H., Seo, K., Choi, Y., Kim, J., Tanaka, M., Lee, K., Choi, J., 2021. Methods of analyzing microsized plastics in the environment. Applied Sciences 11(22), 10640. https://doi.org/10.3390/app112210640.
    Wu, J., Bratko, D., Prausnitz, J.M., 1998. Interaction between like-charged colloidal spheres in electrolyte solutions. Proceedings of National Academy of Sciences of the United States of America 95(26), 15169-15172. https://doi.org/10.1073/pnas.95.26.15169.
    Wu, X., Zhao, X., Chen, R., Liu, P., Liang, W., Wang, J., Teng, M., Wang, X., Gao, S., 2022. Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. Water Research 221, 118825. https://doi.org/10.1016/j.watres.2022.118825.
    Xia, H., Hirai, T., 2009. Space charge distribution and mechanical properties in plasticized PVC actuators. In: Proceedings of the International Conference on Mechatronics and Automation. IEEE, Changchun, pp. 164-169. https://doi.org/10.1109/ICMA.2009.5246132.
    Xu, B., Liu, F., Brookes, P.C., Xu, J., 2018. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics. Marine Pollution Bulletin 131, 191-196. https://doi.org/10.1016/j.marpolbul.2018.04.027.
    Yan, Y., Zhu, F., Zhu, C., Chen, Z., Liu, S., Wang, C., Gu, C., 2021. Dibutyl phthalate release from polyvinyl chloride microplastics: Influence of plastic properties and environmental factors. Water Research 204, 117597. https://doi.org/10.1016/j.watres.2021.117597.
    Yao, K.-M., Habibian, M.T., O'Melia, C.R., 1971. Water and waste water filtration. Concepts and applications. Environmental Sciences and Technology 5(11), 1105-1112. https://doi.org/10.1021/es60058a005.
    Yao, L., Lv, Y.-Z., Zhang, L.-J., Liu, W.-R., Zhao, J.-L., Liu, Y.-S., Zhang, Q.-Q.,Ying, G.-G., 2018. Determination of 24 personal care products in fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Journal of Chromatography A1551, 29-40. https://doi.org/10.1016/j.chroma.2018.04.003.
    Ye, X., Narayanan, T., Tong, P., Huang, J.S., Lin, M.Y., Carvalho, B.L.,Fetters, L.J., 1996. Depletion interactions in colloid-polymer mixtures. Physical Review E 54(6), 6500-6510. https://doi.org/10.1103/PhysRevE.54.6500.
    Zhang, H., Wang, J., Zhou, B., Zhou, Y., Dai, Z., Zhou, Q., Chriestie, P., Luo, Y., 2018. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environmental Pollution 243, 1550-1557. https://doi.org/10.1016/j.envpol.2018.09.122.
    Zhang, Z., Su, Y., Zhu, J., Shi, J., Huang, H., Xie, B., 2021. Distribution and removal characteristics of microplastics in different processes of the leachate treatment system. Water Management 120, 240-247. https://doi.org/10.1016/j.wasman.2020.11.025.
    Zhu, Y., Ma, J., Zeng, S., Li, X., Lisak, G., Chen, F., 2022. Advanced treatment of microplastics and antibiotic-containing wastewater using integrated modified dissolved air flotation and pulsed cavitation-impinging stream processes. Journal of Hazardous Materials Advances 7, 100139. https://doi.org/10.1016/j.hazadv.2022.100139.
    Zon, N.F., Iskendar, A., Azman, S., Sarijan, S., Ismail, R., 2018. Sorptive behaviour of chromium on polyethylene microbeads in artificial seawater. In: Proceedings of the 12th International Civil Post Graduate Conference - The 3rd International Symposium on Expertise of Engineering Design. MATEC Web Conf., 250, 06001. https://doi.org/10.1051/matecconf/201825006001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return