Citation: | Xiu-juan Feng, Xiao-yi Wang, Dong-ming Li, Zhi-han Liu, Yue-long Yan. 2024: Sulfidation of nano zero-valent iron for enhanced hexavalent chromium removal performance. Water Science and Engineering, 17(3): 249-256. doi: 10.1016/j.wse.2023.12.001 |
Bandara, P.C., Pena-Bahamonde, J., Rodrigues, D.F., 2020. Redox mechanisms of conversion of Cr(VI) to Cr(III) by graphene oxide-polymer composite. Sci. Rep. 10(1), 9237. https://doi.org/10.1038/s41598-020-65534-8.
|
Cao, Z., Li, H., Xu, X., Xu, J., 2020a. Correlating surface chemistry and hydrophobicity of sulfidized nanoscale zerovalent iron with its reactivity and selectivity for denitration and dechlorination. Chemical Engineering Journal 394, 124876. https://doi.org/10.1016/j.cej.2020.124876.
|
Cao, Z., Xu, J., Li, H., Ma, T., Lou, L., Henkelman, G., Xu, X., 2020b. Dechlorination and defluorination capability of sulfidized nanoscale zerovalent iron with suppressed water reactivity. Chemical Engineering Journal 400, 125900. https://doi.org/10.1016/j.cej.2020.125900.
|
Cao, Z., Li, H., Lowry, G.V., Shi, X., Pan, X., Xu, X., Henkelman, G., Xu, J., 2021a. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions. Environmental Science and Technology 55(4), 2628-2638. https://doi.org/10.1021/acs.est.0c07319.
|
Cao, Z., Li, H., Zhang, S., Hu, Y., Xu, J., Xu, X., 2021b. Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environmental Science: Nano 8(9), 2607-2617. https://doi.org/10.1039/D1EN00364J.
|
Dong, H., Zhang, C., Deng, J., Jiang, Z., Zhang, L., Cheng, Y., Hou, K., Tang, L., Zeng, G., 2018. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Research 135, 1-10. https://doi.org/10.1016/j.watres.2018.02.017.
|
Dong, Y., Xing, W., Luo, K., Zhang, J., Yu, J., Jin, W., Wang, J., Tang, W., 2021. Effective and continuous removal of Cr(VI) from brackish wastewater by flow-electrode capacitive deionization (FCDI). Journal of Cleaner Production 326, 129417. https://doi.org/10.1016/j.jclepro.2021.129417.
|
Herath, H.M.A.S., Kawakami, T., Nagasawa, S., Serikawa, Y., Motoyama, A., Chaminda, G.G.T., Weragoda, S.K., Yatigammana, S.K., Amarasooriya, A., 2018. Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology. Journal of Water and Health 16(2), 212-222. https://doi.org/10.2166/wh.2018.070.
|
Jiang, Q., Jiang, S., Li, H., Zhang, R., Jiang, Z., Zhang, Y., 2022. A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chemical Engineering Journal 431, 133937. https://doi.org/10.1016/j.cej.2021.133937.
|
Jiang, W., Cai, Q., Xu, W., Yang, M., Cai, Y., Dionysiou, D.D., O'Shea, K.E., 2014. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science and Technology 48(14), 8078-8085. https://doi.org/10.1021/es405804m.
|
Jin, W., Du, H., Zheng, S., Zhang, Y., 2016. Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta 191, 1044-1055. https://doi.org/10.1016/j.electacta.2016.01.130.
|
Li, J., Zhang, X., Sun, Y., Liang, L., Pan, B., Zhang, W., Guan, X., 2017. Advances in sulfidation of zerovalent iron for water decontamination. Environmental Science and Technology 51(23), 13533-13544. https://doi.org/10.1021/acs.est.7b02695.
|
Liu, A., Liu, J., Han, J., Zhang, W., 2017. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. Journal of Hazardous Materials 322, 129-135. https://doi.org/10.1016/j.jhazmat.2015.12.070.
|
Lv, D., Zhou, J., Cao, Z., Xu, J., Liu, Y., Li, Y., Yang, K., Lou, Z., Lou, L., Xu, X., 2019. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere 224, 306-315. https://doi.org/10.1016/j.chemosphere.2019.02.109.
|
Lv, Z., Tan, X., Wang, C., Alsaedi, A., Hayat, T., Chen, C., 2020. Metal-organic frameworks-derived 3D yolk shell-like structure Ni@carbon as a recyclable catalyst for Cr(VI) reduction. Chemical Engineering Journal 389, 123428. https://doi.org/10.1016/j.cej.2019.123428.
|
Miretzky, P., Cirelli, A.F., 2010. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials 180(1-3), 1-19. https://doi.org/10.1016/j.jhazmat.2010.04.060.
|
Mpouras, T., Polydera, A., Dermatas, D., Verdone, N., Vilardi, G., 2021. Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; Modeling of batch & column experiments. Chemosphere 269, 128749. https://doi.org/10.1016/j.chemosphere.2020.128749.
|
Qin, H., Hu, T., Zhai, Y., Lu, N., Aliyeva, J., 2020. The improved methods of heavy metals removal by biosorbents: A review. Environmental Pollution 258, 113777. https://doi.org/10.1016/j.envpol.2019.113777.
|
Qu, M., Chen, H., Wang, Y., Wang, X., Tong, X., Li, S., Xu, H., 2021. Improved performance and applicability of copper-iron bimetal by sulfidation for Cr(VI) removal. Chemosphere 281, 130820. https://doi.org/10.1016/j.chemosphere.2021.130820.
|
Tanboonchuy, V., Grisdanurak, N., Liao, C.-H., 2012. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. Journal of Hazardous Materials 205-206, 40-46. https://doi.org/10.1016/j.jhazmat.2011.11.090.
|
Vilardi, G., Sebastiani, D., Miliziano, S., Verdone, N., Di Palma, L., 2018. Heterogeneous nZVI-induced Fenton oxidation process to enhance biodegradability of excavation by-products. Chemical Engineering Journal 335, 309-320. https://doi.org/10.1016/j.cej.2017.10.152.
|
Vilardi, G., 2020. P-aminophenol catalysed production on supported nano-magnetite particles in fixed-bed reactor: Kinetic modelling and scale-up. Chemosphere 250, 126237. https://doi.org/10.1016/j.chemosphere.2020.126237.
|
Wang, X., Zhang, D., Xiang, Q., Zhong, Z., Liao, Y., 2018. Review of water-assisted crystallization for TiO2 nanotubes. Nano-Micro Letters 10(4), 77. https://doi.org/10.1007/s40820-018-0230-4.
|
Wang, X., Liao, Y., Xiang, Q., Zhang, H., Li, Y., Zhong, Z., 2019. Magnetite/iron foil as an effective and nonfiltration catalyst for heterogeneous fenton-like reactions under neutral conditions. Inorganic Chemistry 58(8), 4718-4721. https://doi.org/10.1021/acs.inorgchem.9b00546.
|
Xu, J., Cao, Z., Zhou, H., Lou, Z., Wang, Y., Xu, X., Lowry, G.V., 2019a. Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron. Environmental Science and Technology 53(22), 13344-13352. https://doi.org/10.1021/acs.est.9b04210.
|
Xu, J., Wang, Y., Weng, C., Bai, W., Jiao, Y., Kaegi, R., Lowry, G. V., 2019b. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environmental Science and Technology 53(10), 5936-5945. https://doi.org/10.1021/acs.est.9b00511.
|
Xu, J., Avellan, A., Li, H., Clark, E.A., Henkelman, G., Kaegi, R., Lowry, G.V., 2020a. Iron and sulfur precursors affect crystalline structure, speciation, and reactivity of sulfidized nanoscale zerovalent Iron. Environmental Science and Technology 54(20), 13294-13303. https://doi.org/10.1021/acs.est.0c03879.
|
Xu, J., Avellan, A., Li, H., Liu, X., Noel, V., Lou, Z., Wang, Y., Kaegi, R., Henkelman, G., Lowry, G.V., 2020b. Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Advanced Materials 32(17), 1906910. https://doi.org/10.1002/adma.201906910.
|
Xu, J., Li, H., Lowry, G.V., 2021. Sulfidized nanoscale zero-valent iron: Tuning the properties of this complex material for efficient groundwater remediation. Accounts of Materials Research 2(6), 420-431. https://doi.org/10.1021/accountsmr.1c00037.
|
Zhang, S., Wu, M., Tang, T., Xing, Q., Peng, C., Li, F., Liu, H., Luo, X., Zou, J., Min, X., et al., 2018. Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale. Chemical Engineering Journal 335, 945-953. https://doi.org/10.1016/j.cej.2017.10.182.
|
Zhao, Y., Zhao, D., Chen, C., Wang, X., 2013. Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. Journal of Colloid and Interface Science 405, 211-217. https://doi.org/10.1016/j.jcis.2013.05.004.
|
Zheng, C., Yang, Z., Si, M., Zhu, F., Yang, W., Zhao, F., Shi, Y., 2021. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species. Journal of Hazardous Materials 407, 124376. https://doi.org/10.1016/j.jhazmat.2020.124376.
|
Zhu, F., He, S., Liu, T., 2018. Effect of pH, temperature and co-existing anions on the removal of Cr(VI) in groundwater by green synthesized nZVI/Ni. Ecotoxicology and Environmental Safety 163, 544-550. https://doi.org/10.1016/j.ecoenv.2018.07.082.
|
Zhu, K., Chen, L., Alharbi, N.S., Chen, C., 2022. Interconnected hierarchical nickel-carbon hybrids assembled by porous nanosheets for Cr(VI) reduction with formic acid. Journal of Colloid and Interface Science 606, 213-222. https://doi.org/10.1016/j.jcis.2021.08.024.
|